GEM - International Journal on Geomathematics

, Volume 3, Issue 2, pp 179–208 | Cite as

Iterative algorithms for total variation-like reconstructions in seismic tomography

Original Paper

Abstract

A qualitative comparison of total variation like penalties (total variation, Huber variant of total variation, total generalized variation, . . .) is made in the context of global seismic tomography. Both penalized and constrained formulations of seismic recovery problems are treated. A number of simple iterative recovery algorithms applicable to these problems are described. The convergence speed of these algorithms is compared numerically in this setting. For the constrained formulation a new algorithm is proposed and its convergence is proven.

Keywords

Tomography Total variation Convex optimization Sparsity 

Mathematics Subject Classification

86A22 90C25 65K10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beck A., Teboulle M.: A fast iterative shrinkage-threshold algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009). doi:10.1137/080716542 MathSciNetMATHCrossRefGoogle Scholar
  2. Bredies K., Kunisch K., Pock T.: Total generalized variation. SIAM J. Imaging Sci. 3, 492–526 (2010). doi:10.1137/090769521 MathSciNetMATHCrossRefGoogle Scholar
  3. Candes E., Demanet L., Donoho D., Ying L.: Fast discrete curvelet transforms. Multiscale Model. Simul. 5(3), 861–899 (2006). doi:10.1137/05064182X MathSciNetMATHCrossRefGoogle Scholar
  4. Chambolle, A.: Total variation minimization and a class of binary MRF models. In: Energy Minimization Methods in Computer Vision and Pattern Recognition. Lecture Notes in Computer Science, vol. 3757, pp. 136–152. Springer, Berlin (2005)Google Scholar
  5. Chambolle A., Lions P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997). doi:10.1007/s002110050258 MathSciNetMATHCrossRefGoogle Scholar
  6. Chambolle A., Pock T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011). doi:10.1007/s10851-010-0251-1 MathSciNetCrossRefGoogle Scholar
  7. Chan T.F., Marquina A., Mulet P.: Higher order total variation-based image restoration. SIAM J. Sci. Comput. 22, 503–516 (2000). doi:10.1137/S1064827598344169 MathSciNetMATHCrossRefGoogle Scholar
  8. Chen S.S., Donoho D.L., Saunders M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998). doi:10.1137/S1064827596304010 MathSciNetCrossRefGoogle Scholar
  9. Cohen A., Daubechies I., Feauveau J.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45, 485–560 (1992). doi:10.1002/cpa.3160450502 MathSciNetMATHCrossRefGoogle Scholar
  10. Combettes, P.L., Pesquet, J.-C.: Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer, Berlin (2011)Google Scholar
  11. Daubechies I., Defrise M., De Mol C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004). doi:10.1002/cpa.20042 MathSciNetMATHCrossRefGoogle Scholar
  12. Esser E., Zhang X., Chan T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015–1046 (2010). doi:10.1137/09076934X MathSciNetMATHCrossRefGoogle Scholar
  13. Gholami A., Siahkoohi H.R.: Regularization of linear and non-linear geophysical ill-posed problems with joint sparsity constraints. Geophys. J. Int. 180(2), 871–882 (2010). doi:10.1111/j.1365-246X.2009.04453.x CrossRefGoogle Scholar
  14. Goldstein T., Osher S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009). doi:10.1137/080725891 MathSciNetMATHCrossRefGoogle Scholar
  15. Hennenfent G., van Berg E., Friedlander M.P., Herrmann F.J.: New insights into one-norm solvers from the Pareto curve. Geophysics 73(4), A23–A26 (2008). doi:10.1190/1.2944169 Google Scholar
  16. Herrmann F.J., Hennenfent G.: Non-parametric seismic data recovery with curvelet frames. Geophys. J. Int. 173(1), 233–248 (2008). doi:10.1111/j.1365-246X.2007.03698.x CrossRefGoogle Scholar
  17. Huber P.J.: Robust estimation of a location parameter. Ann. Stat. 53, 73–101 (1964). doi:10.1214/aoms/1177703732 Google Scholar
  18. Labate, D., Lim, W., Kutyniok, G., Weiss, G.: Sparse multidimensional representation using shearlets. In: SPIE Proc. 5914, SPIE, Bellingham, WA, 2005. Wavelets XI (San Diego, CA, 2005), pp. 254–262. doi:10.1117/12.613494
  19. Loris I., Verhoeven C.: On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty. Inverse Probl. 27, 125007 (2011). doi:10.1088/0266-5611/27/12/125007 MathSciNetCrossRefGoogle Scholar
  20. Loris I., Nolet G., Daubechies I., Dahlen F.A.: Tomographic inversion using ℓ1-norm regularization of wavelet coefficients. Geophys. J. Int. 170(1), 359–370 (2007). doi:10.1111/j.1365-246X.2007.03409.x CrossRefGoogle Scholar
  21. Lukic T., Lindblad J., Sladoje N.: Regularized image denoising based on spectral gradient optimization. Inverse Probl. 27(8), 085010 (2011). doi:10.1088/0266-5611/27/8/085010 MathSciNetCrossRefGoogle Scholar
  22. Mallat S.: A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn. Academic Press, New York (2009)Google Scholar
  23. Nesterov Y.E.: A method for solving a convex programming problem with convergence rate \({\mathcal{O}(1/k^2)}\) . Soviet Math. Dokl. 27(2), 372–376 (1983)MATHGoogle Scholar
  24. Ronchi C., Iacono R., Paolucci P.: The “cubed sphere”: a new method for the solution of partial differential equations in spherical geometry. J. Comput. Phys. 124, 93–114 (1996). doi:10.1006/jcph.1996.0047 MathSciNetMATHCrossRefGoogle Scholar
  25. Rudin L.I., Osher S., Fatemi E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60(1–4), 259–268 (1992). doi:10.1016/0167-2789(92)90242-F MATHCrossRefGoogle Scholar
  26. Setzer S., Steidl G., Teuber T.: Infimal convolution regularizations with discrete ℓ1-type functionals. Commun. Math. Sci. 9(3), 797–827 (2011)MathSciNetGoogle Scholar
  27. Simons F.J., Loris I., Nolet G., Daubechies I.C., Voronin S., Judd J.S., Vetter P.A., CharlTty J., Vonesch C.: Solving or resolving global tomographic models with spherical wavelets, and the scale and sparsity of seismic heterogeneity. Geophys. J. Int. 187(2), 969–988 (2011). doi:10.1111/j.1365-246X.2011.05190.x CrossRefGoogle Scholar
  28. Strong D., Chan T.: Edge-preserving and scale-dependent properties of total variation regularization. Inverse Probl. 19(6), S165 (2003). doi:10.1088/0266-5611/19/6/059 MathSciNetMATHCrossRefGoogle Scholar
  29. Trampert J., Woodhouse J.H.: Global phase-velocity maps of Love and Rayleigh-waves between 40 and 150 seconds. Geophys. J. Int. 122(2), 675–690 (1995). doi:10.1111/j.1365-246X.1995.tb07019.x CrossRefGoogle Scholar
  30. Trampert J., Woodhouse J.H.: High resolution global phase velocity distributions. Geophys. Res. Lett. 23(1), 21–24 (1996). doi:10.1029/95GL03391 CrossRefGoogle Scholar
  31. Trampert J., Woodhouse J.H.: Assessment of global phase velocity models. Geophys. J. Int. 144(1), 165–174 (2001). doi:10.1046/j.1365-246x.2001.00307.x CrossRefGoogle Scholar
  32. van Berg E., Friedlander M.P.: Sparse optimization with least-squares constraints. SIAM J. Optim. 21(4), 1201–1229 (2011). doi:10.1137/100785028 MathSciNetMATHCrossRefGoogle Scholar
  33. Yamagishi M., Yamada I.: Over-relaxation of the fast iterative shrinkage-thresholding algorithm with variable stepsize. Inverse Probl. 27(10), 105008 (2011). doi:10.1088/0266-5611/27/10/105008 MathSciNetCrossRefGoogle Scholar
  34. Zhang X., Burger M., Osher S.: A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46, 20–46 (2011). doi:10.1007/s10915-010-9408-8 MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Université Libre de BruxellesBrusselsBelgium

Personalised recommendations