On homogenization of stokes flow in slowly varying media with applications to fluid–structure interaction

  • Donald L. BrownEmail author
  • Peter Popov
  • Yalchin Efendiev
Original Paper


In this paper we establish corrector estimates for Stokes flow in slowly varying perforated media via two scale asymptotic analysis. Current methods and techniques are often not able to deal with changing geometries prevalent in applied problems. For example, in a deformable porous medium environment, the geometry does not remain periodic under mechanical deformation and if slow variation in the geometry occurs. For such problems, one cannot use classical homogenization results directly and new homogenization results and estimates are needed. Our work uses asymptotic techniques of Marusic-Paloka and Mikelic (Bollettino U.M.I 7:661–671, 1996) where the authors constructed a downscaled velocity which converges to the fine-scale velocity at a rate of ε 1/6 where ε is the characteristic length scale. We assume a slowly varying porous medium and study homogenization and corrector estimates for the Stokes equations. Slowly varying media arise, e.g., in fluid–structure interaction (FSI) problems (Popov et al. in Iterative upscaling of flows in deformable porous media, 2008), carbonation of porous concrete (Peter in C. R. Mecanique 335:357–362, 2007a; C. R. Mecanique 335:679–684, 2007b), and various other multiphysics processes. To homogenize Stokes flows in such media we restate the cell problems of Marusic-Paloka and Mikelic (Bollettino U.M.I 7:661–671, 1996) in a moving RVE framework. Further, to recover the same convergence properties it is necessary to solve an additional cell problem and add one more corrector term to the downscaled velocity. We further extend the framework of Marusic-Paloka and Mikelic (Bollettino U.M.I 7:661–671, 1996) to three spatial dimensions in both periodic and variable pore-space cases. Next, we also propose an efficient algorithm for computing the correctors by solving a limited number of cell problems at selected spatial locations. We present two computational examples: one for a constructed medium of elliptical perforations, and another for a fractured medium with FSI driven deformation. We obtain numerical estimates that confirm the theory in these two examples.


Stokes Homogenization Fluid–structure interaction Slowly varying geometry Multiscale 

Mathematics Subject Classification (2000)

35A25 74Q99 35B27 74F10 


  1. Allaire A.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23, 1482–1518 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Bensoussan A., Lions J.L., Papanicolaou G.: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and Its Applications, vol. 5. North-Holland, Amsterdam (1978)Google Scholar
  3. Brenner S.C., Scott R.S.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15. Springer, Berlin (2008)CrossRefGoogle Scholar
  4. Brown, D.L.: Multiscale methods for fluid–structure interaction, PhD thesis, Texas A&M University, College Station, TX, USA (2012, in press)Google Scholar
  5. Darcy, H.: Les fontaines publique de la ville de Dijon. Librairie des Corps Impériaux des Ponts et Chaussées et des Mines, Paris (1856)Google Scholar
  6. Efendiev, Y., Hou, T.: Multiscale finite element methods: theory and applications. Surveys and Tutorials in the Applied Mathematical Sciences, vol. 4. Springer, 233 Spring Street, New York, NY 10013, USA (2009)Google Scholar
  7. Iliev O., Mikelic A., Popov P.: On upscaling certain flows in deformable porous media. SIAM Multiscale Model. Simul. 7, 93–123 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Iosif’yan G.A., Oleinik O.A., Shamaev A.S.: Mathematical Problems in Elasticity and Homogenization. Elsevier, Amsterdam (1992)Google Scholar
  9. Jaeger, W., Mikelic, A.: On the flow conditions at the boundary between a porous media and an impervious solid, in Progress in partial differential equations: the Metz surveys, vol. 3 (1994)Google Scholar
  10. Lions J.L.: Some Methods in the Mathematical Analysis of Systems and Their Control. Gordon and Breach, New York (1981)zbMATHGoogle Scholar
  11. Lipton, R., Avellaneda, M.: Darcy’s law for slow viscous flow past a stationary array of bubbles. In: Proceedings of the Royal Society of Edinbourgh A., vol. 114, pp. 71–79 (1990)Google Scholar
  12. Marusic-Paloka E., Mikelic A.: An error estimate for correctors in the homogenization of the Stokes and Navier-Stokes equations in a porous medium. Bollettino U.M.I 7, 661–671 (1996)MathSciNetGoogle Scholar
  13. Mikelic A.: Homogenization theory and applications to filtration through porous media. In: Fasano, A. (eds) Filtration in porous media and industrial application, chapter 2, Lecture Notes in Mathematics, vol. 1734, pp. 127–214. Springer, Berlin (1998)Google Scholar
  14. Nguetseng G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20, 608–623 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Peter M.A.: Homogenisation in domains with evolving microstructure. C. R. Mecanique 335, 357–362 (2007a)zbMATHGoogle Scholar
  16. Peter M.A.: Homogenisation of a chemical degradation mechanism inducing an evolving microstructure. C. R. Mecanique 335, 679–684 (2007b)zbMATHGoogle Scholar
  17. Popov, P.: Constitutive modelling of Shape Memory Alloys and upscaling of deformable porous media, PhD thesis, Texas A&M University (2005)Google Scholar
  18. Popov, P., Efendiev Y., Gorb Y.: Multiscale modeling and simulation of fuid flows in highly deformable porous media. In: Lirkov, I., Margenov, S., Wasniewski, J. (eds.) Proceedings of the 7th Conference on Large-Scale Scientific Computing. LNCS, vol. 5910. Springer, Berlin (2009)Google Scholar
  19. Popov, P., Gorb, Y., Efendiev, Y.: Iterative upscaling of flows in deformable porous media (2008, submitted)Google Scholar
  20. Sanchez-Palencia E.: Non-Homogeneous Media and Vibration Theory. Lecture Notes in Physics, vol. 127. Springer, Berlin (1980)Google Scholar
  21. Sanchez-Palencia E., Ene H.I.: Equations et phénomènes de surface pour l’écoulement dans un modèle de milieu poreux. Journal de Mécanique 14, 73–108 (1975)MathSciNetzbMATHGoogle Scholar
  22. Tartar L.: Incompressible fluid flow in a porous medium—convergence of the homogenization process. In: (eds) Lecture Notes in Physics, vol 127, pp. 368–377. Springer, Berlin (1980)Google Scholar
  23. Temam R.: Navier–Stokes Equations: Theory and Numerical Analysis. Elsevier North-Holland, New York (1977)zbMATHGoogle Scholar
  24. Zhikov V.V., Kozlov S.M., Oleinik O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Donald L. Brown
    • 1
    Email author
  • Peter Popov
    • 2
  • Yalchin Efendiev
    • 1
  1. 1.Department of MathematicsTexas A&M UniversityCollege StationUSA
  2. 2.Institute of Information and Communication TechnologiesBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations