Skip to main content
Log in

Natural convection in horizontal annuli: evaluation of the error for two approximations

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

We consider convection inside annuli, driven by a uniform temperature gap on the boundaries and gravitation as outer force. It takes place for any Rayleigh number while steady convective motions are observed only for small ones (but any Prandtl number and gap width). We provide estimates for the relative error of two popular approximations to the full Navier–Stokes–Fourier equations. For this we propose a new method. In particular we have to derive a lower bound for the norm of the velocity and the temperature both for steady nonlinear coupled and decoupled approximations in two space dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batchelor G.K.: Heat convection and buoyancy effects in fluids. Q. J. R. Meteorol. Soc. 80, 339–358 (1954)

    Article  Google Scholar 

  • Busse F.H.: Convection-driven zonal flows in the major planets. Pure Appl. Geophys. 121, 375–390 (1983)

    Article  Google Scholar 

  • Duka B., Ferrario C., Passerini A., Piva P.: Non-linear approximation for natural convection in a horizontal annulus. Int. J. Non-linear Mech. 42, 1055–1061 (2007)

    Article  Google Scholar 

  • Ferrario C., Passerini A., Piva S.: A Stokes-like system for natural convection in a horizontal annulus. Nonlinear Anal. Real World Appl. 9, 403–411 (2008a)

    Article  MathSciNet  MATH  Google Scholar 

  • Ferrario C., Passerini A., Thäter G.: Natural convection in horizontal annuli: a lower bound for the energy. J. Eng. Math. 62, 246–259 (2008b)

    Google Scholar 

  • Ferrario C., Passerini A., Růžička M., Thäter G.: Theoretical results on steady convective flows between horizontal coaxial cylinders. SIAM J. Appl. Math. 71, 465–486 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Foias C., Manley O., Temam R.: Attractors for the Bénard problem: existence and physical bounds on their fractal dimension. Nonlinear Anal. Theory Meth. Appl. 11, 939–967 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Galdi G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Springer, New York (1994)

    Book  Google Scholar 

  • Hardee H.C.: Convective transport in crustal magma bodies. J. Volcanol. Geothermal Res. 19, 45–72 (1983)

    Article  Google Scholar 

  • Hernlund J.W., Tackley P.J.: Modeling mantle convection in the spherical annulus. Phys. Earth Planet. Inter. 171, 48–54 (2008)

    Article  Google Scholar 

  • Kuehn T.H., Goldstein R.J.: An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders. J. Fluids Mech. 74, 695–719 (1976)

    Article  MATH  Google Scholar 

  • Langford W.F., Rusu D.D.: Pattern formation in annular convection. Physica A: Stat. Theor. Phys. 261, 188–203 (1998)

    Article  Google Scholar 

  • Mack L.R., Hardee H.C.: Natural convection between concentric spheres at low Rayleigh numbers. Int. J. Heat Mass Transfer 11, 387–396 (1968)

    Article  Google Scholar 

  • Otero J., Wittenberg R.W., Worthing R.A., Doering C.R.: Bounds on Rayleigh-Bénard convection with an imposed heat flux. J. Fluid Mech. 473, 191–199 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Passerini A., Růžička M., Thäter G.: Natural convection between two horizontal coaxial cylinders. Z. Angew. Math. Mech. 89, 399–413 (2009)

    Article  MATH  Google Scholar 

  • Powe R.E., Carley C.T., Bishop E.H.: Free convective flow patterns in cylindrical annuli. J. Heat Transfer 91, 310–314 (1969)

    Google Scholar 

  • Stacey, F.D.: Thermodynamics of the Earth. Rep. Prog. Phys. 73, 046801 (2010)

  • Tao J., Busse F.H.: Thermal convection in a rotating cylindrical annulus and its mean flows. J. Fluid Mech. 552, 73–82 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Teerstra, P., Yovanovich, M.M.: Comprehensive review of natural convection in horizontal circular annuli. In: 7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Albuquerque, NM, June 15–18, HTD-Vol. 357-4, pp. 141–152 (1998)

  • Yoo J.-S.: Natural convection in a narrow horizontal cylindrical annulus: P r  ≤ 0.3. Int. J. Heat Fluid Flow. 17, 587–593 (1996)

    Article  Google Scholar 

  • Yoo J.-S.: Transition and multiplicity of flows in natural convection in a narrow horizontal cylindrical annulus: P r  = 0.4. Int. J. Heat Mass Transfer 42, 709–733 (1999a)

    Article  MATH  Google Scholar 

  • Yoo J.-S.: Prandtl number effect on bifurcation and dual solutions in natural convection in a horizontal annulus. Int. J. Heat Mass Transfer 42, 3279–3290 (1999b)

    Article  MATH  Google Scholar 

  • Zhang K., Liao X., Busse F.H.: Asymptotic solutions of convection in rapidly rotating non-slip spheres. J. Fluid Mech. 578, 371–380 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gudrun Thäter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamacz, A., Passerini, A. & Thäter, G. Natural convection in horizontal annuli: evaluation of the error for two approximations. Int J Geomath 2, 307–323 (2011). https://doi.org/10.1007/s13137-011-0023-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13137-011-0023-0

Keywords

Mathematics Subject Classification (2000)

Navigation