Journal of the Knowledge Economy

, Volume 5, Issue 4, pp 670–685 | Cite as

An Exploratory Analysis of the Dutch Electricity System in Transition

Article

Abstract

Recent contextual developments constitute a backdrop of change for the Dutch electricity system. Institutional change driven by liberalization, changing economic competitiveness of the dominant fuels, new technologies, and changing end-user preferences regarding electricity supply are some examples of these developments. This paper explores plausible transition trajectories in the face of these developments given technological uncertainty about investment and operating costs, and fuel efficiency of various alternative technologies; political uncertainty about future CO2 abatement policies such as emission trading; and socio-economic uncertainty about fuel prices, investment decisions of suppliers, and load curves. Various alternative developments for these uncertainties are specified. The consequences of each of these alternative developments are assessed using an agent-based model of the Dutch electricity system. The outputs are analyzed using various data-mining and data visualization techniques in order to reveal arch-typical transition trajectories and their conditions for occurring. Policy recommendations are derived from this. The results indicate that most transition trajectories point towards a future energy supply system that is reliant on clean coal and gas. Under the explored uncertainties, only rarely a transition to renewables occurs. The various sustainable energy support programs appear to be ineffective in steering the energy supply system towards a more sustainable mode of functioning across the various uncertainties.

Keywords

Electricity supply Transitions Exploratory modeling and analysis Uncertainty Agent-based modeling 

References

  1. Agusdinata, DB (2008). Exploratory modeling and analysis: a promising method to deal with deep uncertainty. Ph.D. thesis, Delft University of Technology.Google Scholar
  2. Ascher, W. (1978). Forecasting: an appraisal for policy makers and planners. Baltimore: Johns Hopkins University Press.Google Scholar
  3. Axelrod, R. (1997). Advancing the art of simulation in the social sciences. Complexity, 3, 16–22.CrossRefGoogle Scholar
  4. Bankes, S. (1993). Exploratory modeling for policy analysis. Operations Research, 4, 435–449.CrossRefGoogle Scholar
  5. Bankes, S. (1994). Exploring the foundations of artificial societies: experiments in evolving solutions to N-player Prisoner’s dilemma. In R. Brooks & P. Maes (Eds.), Artifical life IV. Cambridge: MIT Press.Google Scholar
  6. Bankes, S., & Margoliash, D. (1993). Parametric modeling of the temporal dynamics of neuronal responses using connectionist architectures. Journal of Neurophysiology, 69, 980–991.Google Scholar
  7. Ben Haim, Y. (2001). Information-gap decision theory: decision under severe uncertainty. Waltham: Academic Press.Google Scholar
  8. Ben Haim, Y. (2004). Uncertainty, probability and information-gaps. Reliability Engineering and System Safety, 85, 249–266.CrossRefGoogle Scholar
  9. Ben-Akiva, M. E., & Lerman, S. R. (1985). Discrete choice analysis: theory and application to travel demand. Cambridge: MIT Press.Google Scholar
  10. Breeze, P. (2005). Power generation technologies. Oxford: Newnes.Google Scholar
  11. Brooks, A., Bennet, B., & Bankes, S. (1999). An application of exploratory analysis: the weapon mix problem. Military Operations Research, 4, 67–80.CrossRefGoogle Scholar
  12. Bryant, B. P., & Lempert, R. J. (2010). Thinking inside the box: a participatory computer-assisted approach to scenario discovery. Technological Forecasting and Social Change, 77, 34–49.CrossRefGoogle Scholar
  13. Cambell, D., Crutchfield, J., Farmer, D., & Jen, E. (1985). Experimental mathematics—the role of computation in nonlinear science. Communications of the ACM, 28, 374–384.CrossRefGoogle Scholar
  14. Chong, I. G., & Jun, C. H. (2008). Flexible patient rule induction method for optimizing process variables in discrete types. Expert Systems with Applications, 34, 3014–3020.CrossRefGoogle Scholar
  15. Davison, J. (2007). Performance and costs of power plants with capture and storage of CO2. Energy, 32, 1163–1176.CrossRefGoogle Scholar
  16. de Vries, L. J. (2004). Securing the public interest in electricity generation markets: the myths of the invisible hand and the copper plate. PhD thesis, Delft University of Technology.Google Scholar
  17. Dessai, S., Hulme, M., & Lempert, R. (2009). Do we need better predictions to adapt to a changing climate? Eos, 90, 111–112.CrossRefGoogle Scholar
  18. Enserink, B., Hermans, L., Kwakkel, J. H., Thissen, W., Koppenjan, J. F. M., & Bots, P. W. G. (2010). Policy analysis of multi-actor systems. Lemma: Utrecht.Google Scholar
  19. Epstein, J. M., & Axtell, R. (1996). Growing artificial societies: social science from the bottom up. Washington D.C: Brookings Institution Press.Google Scholar
  20. Friedman, J. H., & Fisher, N. I. (1999). Bump hunting in high-dimensional data. Statistics and Computing, 9, 123–143.CrossRefGoogle Scholar
  21. Garcia, R. (2005). Uses of agent-based modeling in innovation/new product development research. The Journal of Product Innovation Management, 22, 380–398.CrossRefGoogle Scholar
  22. Geels, F. W. (2002). Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case study. Research Policy, 1257–1274.Google Scholar
  23. Geels, F. W. (2005). Technological transitions and system innovations: a co-evolutionary and socio-technical analysis. Cheltenham: Edward Elgar Publishing, Inc.CrossRefGoogle Scholar
  24. Gensch, D. H., & Recker, W. W. (1979). The multinomial, multiattribute logit choice model. Journal of Marketing Research, 16, 124–132.CrossRefGoogle Scholar
  25. Gilbert, N., & Troitzsch, K. (2005). Simulation for the social scientist. Berkshire: Open University Press.Google Scholar
  26. Goodwin, P., & Wright, G. (2010). The limits of forecasting methods in anticipating rare events. Technological Forecasting and Social Change, 77, 355–368.CrossRefGoogle Scholar
  27. Green, R. (2004). Did English generators play Cournot? Capacity withholding in the electricity pool. Cambridge Working Papers in Economics. Cambridge: University of Cambridge.Google Scholar
  28. Grimm, V., & Railsback, S. F. (2005). Individual-based modeling and ecology. Princeton: Princeton University Press.Google Scholar
  29. Grin, J., Rotmans, J., & Schot, J. (Eds.). (2010). Transitions to sustainable development. New directions in the study of long term transformative change. New York/London: Routledge.Google Scholar
  30. Groves, D. G., & Lempert, R. J. (2007). A New analytic method for finding policy-relevant scenarios. Global Environmental Change, 17, 73–85.CrossRefGoogle Scholar
  31. Hamarat, C., Kwakkel, J. H. & Pruyt, E. (2012). Energy transitions: adaptive policy making under deep uncertainty. Technological Forecasting and Social Change. doi:10.1016/j.techfore.2012.10.004.
  32. Hodges, J. S. (1991). Six (or so) things you can do with a bad model. Operations Research, 39, 355–365.CrossRefGoogle Scholar
  33. Hodges, J. S., & Dewar, J. A. (1992). Is it you or your model talking? A framework for model validation. Santa Monica: RAND.Google Scholar
  34. Hughes, T. P. (1983). Networks of power: electrification in western society, 1880–1930. Baltimore: Johns Hopkins University Press.Google Scholar
  35. Jones, E., Oliphant, T., Peterson, P. & Others, A. (2001). SciPy: open source scientific tools for Python.Google Scholar
  36. Keeney, R., & Gregory, R. (2005). Selecting attributes to measure the achievement of objectives. Operations Research, 53, 1–11.CrossRefGoogle Scholar
  37. Keeney, R., & Raiffa, H. (1993). Decisions with multiple objectives: preferences and values tradeoffs. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  38. Kemp, R., Schot, J., & Hoogma, R. (1998). Regime shifts to sustainability through processes of niche formation: the approach of strategic niche management. Technology Analysis and Strategic Management, 10, 175–195.CrossRefGoogle Scholar
  39. Kwakkel, J. H., Auping, W. & Pruyt, E. (2012). Dynamic scenario discovery under deep uncertainty: the future of copper. Technological Forecasting and Social Change. doi:10.1016/j.techfore.2012.09.012.
  40. Kwakkel, J. H. & Pruyt, E. (2012). Exploratory Modeling and Analysis, an approach for model-based foresight under deep uncertainty. Technological Forecasting and Social Change. doi:10.1016/j.techfore.2012.10.005.
  41. Kwakkel, J. H., Walker, W. E., & Marchau, V. A. W. J. (2012). Assessing the efficacy of adaptive airport strategic planning: results from computational experiments. Environment and Planning B: Planning and Design, 39, 533–550.CrossRefGoogle Scholar
  42. Lako, P., & Seebregts, A. (1998). Characterisation of power generation options for the 21st century: report on behalf of macro task E1. Petten: ECN.Google Scholar
  43. Lempert, R. J. (2002). A new decision sciences for complex systems. Proceedings of the National Academy of Sciences of the United States of America, 99, 7309–7313.CrossRefGoogle Scholar
  44. Lempert, R. J., Popper, S., & Bankes, S. (2002). Confronting surprise. Social Science Computer Review, 20, 420–439.CrossRefGoogle Scholar
  45. Lempert, R. J., Popper, S., & Bankes, S. (2003). Shaping the next one hundred years: new methods for quantitative, long term policy analysis. Santa Monica: RAND.Google Scholar
  46. Lempert, R. J., Bryant, B. P., & Bankes, S. (2008). Comparing algorithms for scenario discovery. Santa Monica: Rand.Google Scholar
  47. Loorbach, D. (2007). Transition management: new mode of governance for sustainable development. Utrecht: International Books.Google Scholar
  48. McInerney, D., Lempert, R., & Keller, K. (2012). What are robust strategies in the face of uncertain climate threshold responses. Climate Change, 112, 547–568.CrossRefGoogle Scholar
  49. Miller, J. H., & Page, S. E. (2007). Complex adaptive systems: an introduction to computational models of social life. Princeton: Princeton University Press.Google Scholar
  50. North, M. J., Collier, N. T., & Vos, J. R. (2006). Experiences creating three implementations of the repast agent modeling toolkit. ACM Transactions on Modeling and Computer Simulation, 16, 125.CrossRefGoogle Scholar
  51. Orrel, D., & McSharry, P. (2009). System economics: overcoming the pitfalls of forecasting models via a multidisciplinary approach. International Journal of Forecasting, 25, 734–743.CrossRefGoogle Scholar
  52. Park, G., & Lempert, R. (1998). The class of 2014: preserving access to california higher education. Santa Monica: RAND.Google Scholar
  53. Pepermans, G., Driesen, J., Haeseldonckx, D., Belmans, R., & D’Haeseleer, W. (2005). Distributed generation: definition, benefits and issues. Energy Policy, 33, 787–798.CrossRefGoogle Scholar
  54. Pilkey, O. H., & Pilkey-Jarvis, L. (2007). Useless arithmetic: why environmental scientists can’t predict the future. New York: Columbia University Press.Google Scholar
  55. Pirog, R. L., Stamos, S., Cohn, S., Knapp, R. H., & Simon, R. M. (1987). Energy economics: theory and policy. Prentice-Hall: Englewood Cliffs.Google Scholar
  56. Rödel, J. G. (2008). Ecology, economy and security of supply of the dutch electricity supply system: a scenario based future analysis. PhD thesis, Delft University of Technology.Google Scholar
  57. Rotmans, J., Kemp, R., & Asselt, M. V. (2001). More evolution than revolution: transition management in public policy. Foresight, 3, 15–31.CrossRefGoogle Scholar
  58. Schwartz, P. (1991). The art of the long view. Chichester: Wiley.Google Scholar
  59. Schwarz, N., & Ernst, A. (2009). Agent-based modeling of the diffusion of environmental innovations - an empirical approach. Technological Forecasting and Social Change, 76, 497–511.CrossRefGoogle Scholar
  60. Seebregts, A. (2005). Appendix B: description of the POWERS model (in Dutch). In: A. J. Seebregts, M. J. J. Scheepers, R. Jansma, & J. F. A. V. Hienen (eds.) Kerncentrale Borssele na 2013. Gevolgen van beëindiging of voortzetting van de bedrijfsvoering. Petten: ECN.Google Scholar
  61. Sterman, J. D. (2002). All models are wrong: reflections on becoming a systems scientist. System Dynamics Review, 18, 501–531.CrossRefGoogle Scholar
  62. Timmermans, J., de Haan, H., & Squazzoni, F. (2008). Computational and mathematical approaches to societal transitions. Computational and Mathematical Organization Theory, 14, 391–414.CrossRefGoogle Scholar
  63. van Damme, E. (2005). Liberalizing the Dutch electricity market: 1998–2004. Tilburg: CentER - Tilburg University.Google Scholar
  64. van den Broek, M., Faaij, A., & Turkenburg, W. (2008). Planning for an electricity sector with carbon capture and storage: case of the Netherlands. International Journal of Greenhouse Gas Control, 2, 105–129.CrossRefGoogle Scholar
  65. van der Heijden, K. (1996). Scenarios: the art of strategic conversation. Chichester: Wiley.Google Scholar
  66. van der Pas, J. W. G. M., Walker, W. E., Marchau, V. A. W. J., van Wee, B., & Agusdinata, B. (2010). Exploratory MCDA for handling deep uncertainties: the case of intelligent speed adaptation implementation. Journal of Multicriteria Decision Analysis, 17, 1–23.CrossRefGoogle Scholar
  67. van Rossum, G. (1995). Python reference manual. CWI Report CS-R9525. Google Scholar
  68. Vogstad, K.-O. (2004). A system dynamics analysis of the Nordic electricity market: the transition from fossil fuelled toward a renewable supply within a liberalised electricity market. PhD thesis, Norwegian University of Science and Technology.Google Scholar
  69. Voorspools, K. (2004). The modelling of large electricity-generation systems with applications in emission-reduction scenarios and electricity trade. PhD thesis, Leuven KU.Google Scholar
  70. Voorspools, K., & D’Haeseleer, W. (2003). The impact of the implementation of cogeneration in a given energetic context. IEEE Transactions on Energy Conversion, 18, 135–141.CrossRefGoogle Scholar
  71. Wittmann, T. (2008). Agent-based models of energy investment decisions. Heidelberg: Physicrra.Google Scholar
  72. Yücel, G. (2010). Analyzing transition dynamics: the actor-option framework for modelling socio-technical systems. PhD thesis, Delft University of Technology.Google Scholar
  73. Yücel, G., & van Daalen, C. (2012). A simulation-based analysis of transition pathways for the Dutch electricity system. Energy Policy, 42, 557–568.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Faculty of Technology, Policy and ManagementDelft University of TechnologyDelftThe Netherlands
  2. 2.Industrial Engineering DepartmentBoğaziçi UniversityİstanbulTurkey

Personalised recommendations