Acta Oceanologica Sinica

, Volume 38, Issue 11, pp 140–148 | Cite as

An accelerated nonlocal means algorithm for synthetic aperture radar ocean image despeckling

  • Guozhen ZhaEmail author
  • Dewei Xu
  • Yanming Yang
  • Xin’gai Song
  • Fuhuang Zhong


Synthetic aperture radar (SAR) images play an increasingly important role in ocean environmental monitoring and research. However, SAR images are inherently corrupted by speckle noise. SAR ocean images have some unique characteristics. The signatures of ocean phenomena in SAR images mainly exhibit as stripe or plaque shaped features. These features typically have a high degree of self-similarity or redundancy. The nonlocal means (NLM) method can measure the structural similarity between different image patches and take advantage of redundant information in images. Considering that the NLM algorithm is computationally intensive and time-consuming, an accelerated NLM algorithm for SAR ocean image despeckling is proposed in this paper. A method is used to discriminate between texture and flat pixels in SAR images. Large similarity and search windows are used on texture pixels, whereas small similarity and search windows are used on flat pixels. Furthermore, the improved NLM algorithm is accelerated by a graphic processing unit (GPU) based on the compute unified device architecture (CUDA) parallel computation framework. The computational efficiency is improved by approximately 200 times.

Key words

synthetic aperture radar speckle noise ocean nonlocal means method compute unified device architecture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the scientists involved in the Dragon Program.


  1. Achim A, Tsakalides P, Bezerianos A. 2003. SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling. IEEE Transactions on Geoscience and Remote Sensing, 41(8): 1773–1784, doi: CrossRefGoogle Scholar
  2. Alpers W, Brandt P, Lazar A, et al. 2013. A small-scale oceanic eddy off the coast of west Africa studied by multi-sensor satellite and surface drifter data. Remote Sensing of Environment, 129: 132–143, doi: CrossRefGoogle Scholar
  3. Argenti F, Alparone L. 2002. Speckle removal from SAR images in the undecimated wavelet domain. IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2363–2374, doi: CrossRefGoogle Scholar
  4. Aubert G, Aujol J F. 2008. A variational approach to removing multiplicative noise. SIAM Journal on Applied Mathematics, 68(4): 925–946, doi: CrossRefGoogle Scholar
  5. Bilcu R C, Vehvilainen M. 2007. Fast nonlocal means for image denoising. In: Proceedings of SPIE 6502, Digital Photography III. San Jose, CA, USA: SPIE, doi: Google Scholar
  6. Buades A, Coll B, Morel J M. 2005. A review of image denoising algorithms, with a new one. Multiscale Modeling & Simulation, 4(2): 490–530CrossRefGoogle Scholar
  7. Cuomo S, de Michele P, Piccialli F. 2014. 3D Data denoising via nonlocal means filter by using parallel GPU strategies. Computational and Mathematical Methods in Medicine, 2014: 523862, doi: CrossRefGoogle Scholar
  8. Dabov K, Foi A, Katkovnik V, et al. 2007. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16(8): 2080–2095, doi: CrossRefGoogle Scholar
  9. Deledalle C A, Duval V, Salmon J. 2012. Non-local methods with shape-adaptive patches (NLM-SAP). Journal of Mathematical Imaging and Vision, 43(2): 103–120, doi: CrossRefGoogle Scholar
  10. Feng Chaolu, Zhao Dazhe, Huang Min. 2016. Image segmentation using CUDA accelerated non-local means denoising and bias correction embedded fuzzy c-means (BCEFCM). Signal Processing, 122: 164–189, doi: CrossRefGoogle Scholar
  11. Foucher S, Farage G, Benie G. 2006. SAR image filtering based on the stationary contourlet transform. In: Proceeding of 2006 IEEE International Symposium on Geoscience and Remote Sensing. Denver, Colorado, USA: IEEE, 4021–4024CrossRefGoogle Scholar
  12. Frost V S, Stiles J A, Shanmugan K S, et al. 1982. A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-4(2): 157–166CrossRefGoogle Scholar
  13. Goossens B, Luong H, Aelterman J, et al. 2010. A GPU-accelerated real-time NLMeans algorithm for denoising color video sequences. In: Proceedings of the 12th International Conference on Advanced Concepts for Intelligent Vision Systems. Sydney, Australia: Springer, 46–57, doi: CrossRefGoogle Scholar
  14. Johannessen J A, Shuchman R A, Digranes G, et al. 1996. Coastal ocean fronts and eddies imaged with ERS 1 synthetic aperture radar. Journal of Geophysical Research, 101(C3): 6651–6667, doi: CrossRefGoogle Scholar
  15. Katkovnik V, Foi A, Egiazarian K, Astola J. 2010. From local kernel to nonlocal multiple-model image denoising. International Journal of Computer Vision, 86(1): 1–32, doi: CrossRefGoogle Scholar
  16. Kervrann C, Boulanger J, Coupé P. 2007. Bayesian non-local means filter, image redundancy and adaptive dictionaries for noise removal. In: Proceeding of the 1st International Conference on Scale Space and Variational Methods in Computer Vision. Ischia, Italy: Springer, 4485: 520–532CrossRefGoogle Scholar
  17. Kuan D, Sawchuk A, Strand T, et al. 1987. Adaptive restoration of images with speckle. IEEE Transactions on Acoustics, Speech, and Signal Processing, 35(3): 373–383, doi: CrossRefGoogle Scholar
  18. Lee J S. 1980. Digital image enhancement and noise filtering by use of local statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-2(2): 165–168CrossRefGoogle Scholar
  19. Li Ying, Gong Hongli, Feng Dagan, et al. 2011. An adaptive method of speckle reduction and feature enhancement for SAR images based on curvelet transform and particle swarm optimization. IEEE Transactions on Geoscience and Remote Sensing, 49(8): 3105–3116, doi: CrossRefGoogle Scholar
  20. Li Xiaoming, Lehner S, Bruns T. 2014. Simultaneous measurements by advanced SAR and radar altimeter on potential improvement of ocean wave model assimilation. IEEE Transactions on Geoscience and Remote Sensing, 52(5): 2508–2518, doi: CrossRefGoogle Scholar
  21. Liu A K, Chang Y S, Hsu M K, et al. 1998. Evolution of nonlinear internal waves in the East and South China Sea. Journal of Geophysical Research, 103(C4): 7995–8008, doi: CrossRefGoogle Scholar
  22. Lopes A, Touz R, Nezry E. 1990. Adaptive speckle filters and scene heterogeneity. IEEE Transactions on Geoscience and Remote Sensing, 28(6): 992–1000, doi: CrossRefGoogle Scholar
  23. Márques A, Pardo A. 2013. Implementation of non local means filter in GPUs. In: Proceedings of the 18th Iberoamerican Congress Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Havana, Cuba: Springer, 407–414, doi: CrossRefGoogle Scholar
  24. Parrilli S, Poderico M, Angelino C V, et al. 2012. A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage. IEEE Transactions on Geoscience and Remote Sensing, 50(2): 606–616, doi: CrossRefGoogle Scholar
  25. Shen Hui, Perrie W, Liu Qingrong, et al. 2014. Detection of macroalgae blooms by complex SAR imagery. Marine Pollution Bulletin, 78(1–2): 190–195, doi: CrossRefGoogle Scholar
  26. Solberg A H S, Brekke C, Husoy P O. 2007. Oil spill detection in Radarsat and Envisat SAR images. IEEE Transactions on Geoscience and Remote Sensing, 45(3): 746–755, doi: CrossRefGoogle Scholar
  27. Vignesh R, Tae Oh B, Jay Kuo C C. 2010. Fast non-local means (NLM) computation with probabilistic early termination. IEEE Signal Processing Letters, 17(3): 277–280, doi: CrossRefGoogle Scholar
  28. Walessa M, Datcu M. 2000. Model-based despeckling and information extraction from SAR images. IEEE Transactions on Geoscience and Remote Sensing, 38(5): 2258–2269, doi: CrossRefGoogle Scholar
  29. Wang Jin, Guo Yanwen, Ying Yiting, et al. 2006. Fast non-local algorithm for image denoising. In: Proceedings of 2006 IEEE International Conference on Image Processing. Atlanta, GA, USA: IEEE, 1429–1432, doi: CrossRefGoogle Scholar
  30. Wang Juan, Huang Weigen, Yang Jingsong, et al. 2013. Study of the propagation direction of the internal waves in the South China Sea using satellite images. Acta Oceanologica Sinica, 32(5): 42–50, doi: CrossRefGoogle Scholar
  31. Wu Yifeng, Maitre H. 1992. Smoothing speckled synthetic aperture radar images by using maximum homogeneous region filters. Optical Engineering, 31(8): 1785–1792, doi: CrossRefGoogle Scholar
  32. Xie Hua, Pierce L E, Ulaby F T. 2002. SAR speckle reduction using wavelet denoising and Markov random field modeling. IEEE Transactions on Geoscience and Remote Sensing, 40(10): 2196–2212, doi: CrossRefGoogle Scholar
  33. Xue Bindang, Huang Yuan, Yang Jihong, et al. 2013. Fast nonlocal remote sensing image denoising using cosine integral images. IEEE Geoscience and Remote Sensing Letters, 10(6): 1309–1313, doi: CrossRefGoogle Scholar
  34. Yang Jungang, Zhang Jie, Meng Junmin. 2010. A detection model of underwater topography with a series of SAR images acquired at different time. Acta Oceanologica Sinica, 29(4): 28–37, doi: CrossRefGoogle Scholar
  35. Zheng Quanan, Susanto R D, Ho C R, et al. 2007. Statistical and dynamical analyses of generation mechanisms of solitary internal waves in the northern South China Sea. Journal of Geophysical Research, 112(C3): C03021, doi: CrossRefGoogle Scholar
  36. Zhong Hua, Zhang Jingjing, Liu Ganchao. 2014. Robust polarimetric SAR despeckling based on nonlocal means and distributed Lee filter. IEEE Transactions on Geoscience and Remote Sensing, 52(7): 4198–4210, doi: CrossRefGoogle Scholar

Copyright information

© chinese society for oceanography and springer-verlag gmbh germany, part of springer nature 2019

Authors and Affiliations

  • Guozhen Zha
    • 1
    Email author
  • Dewei Xu
    • 1
  • Yanming Yang
    • 1
  • Xin’gai Song
    • 2
  • Fuhuang Zhong
    • 1
  1. 1.Third Institute of OceanographyMinistry of Natural ResourcesXiamenChina
  2. 2.National Satellite Ocean Application ServiceBeijingChina

Personalised recommendations