Acta Oceanologica Sinica

, Volume 38, Issue 11, pp 62–69 | Cite as

Sea level anomalies in the northwestern Pacific during 2011 associated with La Niña and negative Indian Ocean Dipole

  • Fuwen QiuEmail author
  • Yun Qiu
  • Aijun Pan
  • Jing Cha
  • Shanwu Zhang


The sea level anomalies (SLAs) pattern in the northwestern Pacific delineated significant differences between La Niña events occurring with and without negative Indian Ocean Dipole (IOD) events. During the pure La Niña events, positive the sea surface level anomalies (SLAs) appear in the northwestern Pacific, but SLAs are weakened and negative SLAs appear in the northwestern Pacific under the contribution of the negative IOD events in 2010/2011. The negative IOD events can trigger significant westerly wind anomalies in the western tropical Pacific, which lead to the breakdown of the pronounced positive SLAs in the northwestern Pacific. Meanwhile, negative SLAs excited by the positive wind stress curl near the dateline propagated westward in the form of Rossby waves until it approached the western Pacific boundary in mid-2011, which maintained and enhanced the negative phase of SLAs in the northwestern Pacific and eventually, it could significantly influence the bifurcation and transport of the North Equatorial Current (NEC).

Key words

sea level anomalies La Niña negative IOD northwestern Pacific 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are grateful to Qiang Wang and Jianqiong Zhan for discussion and comments on the paper.


  1. Balmaseda M A, Vidard A, Anderson D L T. 2008. The ECMWF ocean analysis system: ORA-S3. Monthly Weather Review, 136(8): 3018–3034, doi: CrossRefGoogle Scholar
  2. Becker M, Meyssignac B, Letetrel C, et al. 2012. Sea level variations at tropical Pacific islands since 1950. Global and Planetary Change, 80–81: 85–98, doi: CrossRefGoogle Scholar
  3. Cai Wenju, Van Rensch P. 2012. The 2011 southeast Queensland extreme summer rainfall: A confirmation of a negative Pacific Decadal Oscillation phase?. Geophysical Research Letters, 39(8): L08702CrossRefGoogle Scholar
  4. Chen Zhaohui, Wu Lixin, Qiu Bo, et al. 2015. Strengthening Kuroshio observed at its origin during November 2010 to October 2012. Journal of Geophysical Research: Oceans, 120(4): 2460–2470, doi: Google Scholar
  5. Cheng Xuhua, Xie Shangping, Du Yan, et al. 2016. Interannual-to-decadal variability and trends of sea level in the South China Sea. Climate Dynamics, 46(9–10): 3113–3116, doi: CrossRefGoogle Scholar
  6. Dieng H B, Cazenave A, Meyssignac B, et al. 2014. Effect of La Niña on the global mean sea level and north Pacifc ocean mass Over 2005–2011. Journal of Geodetic Science, 4(1): 19–27CrossRefGoogle Scholar
  7. Fang Wendong, Qiu Fuwen, Guo Pu. 2014. Summer circulation variability in the South China Sea during 2006–2010. Journal of Marine Systems, 137: 47–54, doi: CrossRefGoogle Scholar
  8. Fasullo J T, Boening C, Landerer F W, et al. 2013. Australia’s unique influence on global sea level in 2010–2011. Geophysical Research Letters, 40(16): 4368–4373, doi: CrossRefGoogle Scholar
  9. Feng Ming, McPhaden M J, Xie Shangping, et al. 2013. La Niña forces unprecedented Leeuwin Current warming in 2011. Scientific Reports, 3: 1277, doi: CrossRefGoogle Scholar
  10. Häkkinen S, Rhines P B. 2004. Decline of subpolar north Atlantic circulation during the 1990s. Science, 304(5670): 555–559, doi: CrossRefGoogle Scholar
  11. Horii T, Ueki I, Ando K, et al. 2013. Eastern Indian Ocean warming associated with the negative Indian Ocean dipole: A case study of the 2010 event. Journal of Geophysical Research: Oceans, 118(1): 536–549, doi: Google Scholar
  12. Izumo T, Vialard J, Dayan H, et al. 2016. A simple estimation of equatorial Pacific response from windstress to untangle Indian Ocean Dipole and Basin influences on El Nino. Climate Dynamics, 46(7–8): 2247–2268, doi: CrossRefGoogle Scholar
  13. Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77(3): 437–472, doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2CrossRefGoogle Scholar
  14. Kim Y Y, Qu Tangdong, Jensen T, et al. 2004. Seasonal and interannual variations of the North Equatorial Current bifurcation in a high-resolution OGCM. Journal of Geophysical Research: Oceans, 109(C3): C03040CrossRefGoogle Scholar
  15. McGregor S, Gupta A S, England M H. 2012. Constraining wind stress products with sea surface height observations and implications for pacific ocean sea level trend attribution. Journal of Climate, 25(23): 8164–8176, doi: CrossRefGoogle Scholar
  16. Merrifield M A, Maltrud M E. 2011. Regional sea level trends due to a Pacific trade wind intensification. Geophysical Research Letters, 38(21): L21605CrossRefGoogle Scholar
  17. Merrifield M A, Thompson P R, Lander M. 2012. Multidecadal sea level anomalies and trends in the western tropical Pacific. Geophysical Research Letters, 39(13): L13602CrossRefGoogle Scholar
  18. Meyers G, McIntosh P, Pigot L, et al. 2007. The Years of El Nino, La Niña, and interactions with the tropical Indian Ocean. Journal of Climate, 20(13): 2872–2880, doi: CrossRefGoogle Scholar
  19. Qiu Bo, Chen Shuiming. 2010. Interannual-to-decadal variability in the bifurcation of the north equatorial current off the philippines. Journal of Physical Oceanography, 40(11): 2525–2538, doi: CrossRefGoogle Scholar
  20. Qiu Bo, Chen Shuiming. 2012. Multidecadal sea level and gyre circulation variability in the northwestern tropical Pacific Ocean. Journal of Physical Oceanography, 42(1): 193–206, doi: CrossRefGoogle Scholar
  21. Qu Tangdong, Song Y T, Yamagata T. 2009. An introduction to the South China Sea throughflow: Its dynamics, variability, and application for climate. Dynamics of Atmospheres and Oceans, 47(1–3): 3–14, doi: CrossRefGoogle Scholar
  22. Reynolds R W, Smith T M. 1994. Improved global sea surface temperature analyses using optimum interpolation. Journal of Climate, 7(6): 929–948, doi: 10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2CrossRefGoogle Scholar
  23. Shinoda T, Han Weiqing. 2005. Influence of the Indian Ocean dipole on atmospheric subseasonal variability. Journal of Climate, 18(18): 3891–3909, doi: CrossRefGoogle Scholar
  24. Tozuka T, Qu Tangdong, Masumoto Y, et al. 2009. Impacts of the South China Sea Throughflow on seasonal and interannual variations of the Indonesian Throughflow. Dynamics of Atmospheres and Oceans, 47(1–3): 73–85, doi: CrossRefGoogle Scholar
  25. Wang L C, Wu C R, Qiu Bo. 2014. Modulation of Rossby waves on the Pacific North Equatorial Current bifurcation associated with the 1976 climate regime shift. Journal of Geophysical Research: Oceans, 119(10): 6669–6679, doi: Google Scholar
  26. Yuan Dongliang, Wang Jing, Xu Tengfei, et al. 2011. Forcing of the Indian Ocean Dipole on the interannual variations of the tropical Pacific Ocean: roles of the Indonesian Throughflow. Journal of Climate, 24(14): 3593–3608, doi: CrossRefGoogle Scholar
  27. Yuan Dongliang, Zhou Hui, Zhao Xia. 2013. Interannual climate variability over the tropical Pacific Ocean induced by the Indian Ocean dipole through the Indonesian Throughflow. Journal of Climate, 26(9): 2845–2861, doi: CrossRefGoogle Scholar
  28. Zhou Qian, Duan Wansuo, Mu Mu, et al. 2015. Influence of positive and negative Indian Ocean Dipoles on ENSO via the Indonesian Throughflow: Results from sensitivity experiments. Advances in Atmospheric Sciences, 32(6): 783–793, doi: CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fuwen Qiu
    • 1
    Email author
  • Yun Qiu
    • 1
    • 2
  • Aijun Pan
    • 1
  • Jing Cha
    • 1
  • Shanwu Zhang
    • 1
  1. 1.Third Institute of OceanographyMinistry of Natural ResourcesXiamenChina
  2. 2.Laboratory for Regional Oceanography and Numerical ModelingPilot National Laboratory for Marine Science and Technology (Qingdao)QingdaoChina

Personalised recommendations