Acta Oceanologica Sinica

, Volume 38, Issue 8, pp 1–7 | Cite as

Nitrogen uptake regime regulated by ice melting during austral summer in the Prydz Bay, Antarctica

  • Run Zhang
  • Qiang Ma
  • Min ChenEmail author
  • Minfang Zheng
  • Jianping Cao
  • Yusheng Qiu


Using a combination of stable isotope (15N) and radionuclide (226Ra) analyses, we examine possible controls on the interactions between melting ice and the uptake of nitrogen in the Prydz Bay during the 2006 austral summer. We find that specific rates of uptake for nitrate and ammonium correlate positively to their concentrations, thus suggesting a substrate effect. In the study area, we observe that regions along open, oceanic water have high f-ratios (nitrate uptake/nitrate+ammonium uptake), while areas near the Amery Ice Shelf have significantly low f-ratios. Further analysis reveals a negative correlation between the f-ratio and the melt water fraction, thus implying that the melting of ice plays an essential role in regulating pelagic N dynamics in the Southern Ocean (SO). Stratification, produced by melting ice, should profoundly affect the efficiency of the SO’s biological pump and consequently affect the concentration of CO2 in the atmosphere. Results presented in this study add information to an already significant base of understanding of the controls on pelagic C and N dynamics in the SO. This provides unique insights for either interpreting past changes in geologic records or for predicting future climate change trends.

Key words

nitrogen uptake regime ice melting Prydz Bay Antarctica 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the captain and crew of the icebreaker R/V Xuelong, and the CHINARE scientists for providing invaluable assistance while sampling on the sea. Thanks are due to the CHINARE project for environmental data. We also thank Huabin Mao for helpful discussion.


  1. Arrigo K R, Robinson D H, Worthen D L, et al. 1999. Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science, 283(5400): 365–367, doi: 10.1126/science.283.5400.365CrossRefGoogle Scholar
  2. Arrigo K R, Van Dijken G L. 2003. Phytoplankton dynamics within 37 Antarctic coastal polynya systems. Journal of Geophysical Research, 108(C8): 3271, doi: 10.1029/2002JC001739CrossRefGoogle Scholar
  3. Assmy P, Smetacek V, Montresor M, et al. 2013. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current. Proceedings of the National Academy of Sciences of the United States of America, 110(51): 20633–20638, doi: 10.1073/pnas.1309345110CrossRefGoogle Scholar
  4. Bury S J, Owen N J P, Preston T. 1995. 13C and 15N uptake by phytoplankton in the marginal ice zone of the Bellingshausen Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 42(4–5): 1225–1252, doi: 10.1016/0967-0645(95)00065-XCrossRefGoogle Scholar
  5. Cai Yuming, Ning Xiuren, Zhu Genghai, et al. 2005. Size fractionated biomass and productivity of phytoplankton and new production in the Prydz Bay and the adjacent Indian sector of the Southern Ocean during the austral summer 1998/1999. Acta Oceanologica Sinica, 27(4): 135–147Google Scholar
  6. Chen Liqi, Chen Min, Zhan Liyang, et al. 2017. Review of CHINARE chemical oceanographic research in the Southern Ocean during 1984–2016. Advances in Polar Science, 28(2): 139–150Google Scholar
  7. Cochlan W P. 2008. Nitrogen uptake in the Southern Ocean. In: Capone D G, Bronk D A, Mulholland M R, et al., eds. Nitrogen in the Marine Environment. 2nd ed. San Diego: Academic Press, 569–596CrossRefGoogle Scholar
  8. De La Rocha C L, Passow U. 2007. Factors influencing the sinking of POC and the efficiency of the biological carbon pump. Deep Sea Research Part II: Topical Studies in Oceanography, 54(5–7): 639–658, doi: 10.1016/j.dsr2.2007.01.004CrossRefGoogle Scholar
  9. DiFiore P J, Sigman D M, Karsh K L, et al. 2010. Poleward decrease in the isotope effect of nitrate assimilation across the Southern Ocean. Geophysical Research Letters, 37(17): L17601CrossRefGoogle Scholar
  10. DiTullio G R, Grebmeier J M, Arrigo K R, et al. 2000. Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. Nature, 404(6778): 595–598, doi: 10.1038/35007061CrossRefGoogle Scholar
  11. Ducklow H W, Steinberg D K, Buesseler K O. 2001. Upper ocean carbon export and the biological pump. Oceanography, 14(4): 50–58, doi: 10.5670/oceanogCrossRefGoogle Scholar
  12. Dugdale R C, Wilkerson F P. 1986. The use of 15N to measure nitrogen uptake in eutrophic oceans; Experimental considerations. Limnology and Oceanography, 31(4): 673–689, doi: 10.4319/lo.1986.31.4.0673CrossRefGoogle Scholar
  13. Eppley R W, Peterson B J. 1979. Particulate organic matter flux and planktonic new production in the deep ocean. Nature, 282(5740): 677–680, doi: 10.1038/282677a0CrossRefGoogle Scholar
  14. Gao Zhongyong, Chen Liqi, Gao Yuan. 2008. Air-sea carbon fluxes and their controlling factors in the Prydz Bay in the Antarctic. Acta Oceanologica Sinica, 27(3): 136–146Google Scholar
  15. Han Zhengbing, Hu Chuanyu, Xue Bin, et al. 2011. Particulate organic carbon in the surface water of South Ocean and Prydz Bay during the austral summer of 2007/2008 and 2008/2009. Chinese Journal of Polar Research (in Chinese), 23(1): 11–18Google Scholar
  16. Hansen H P, Koroleff F. 1999. Determination of nutrients. In: Grasshoff K, Kremling K, Ehrhardt M, eds. Methods of Seawater Analysis. 3rd ed. Weinheim: Wiley-VCH, 170–198Google Scholar
  17. He Jianhua, Ma Hao, Chen Liqi, et al. 2007. The estimates of the pariculate organic carbon export fluxes in Prydz Bay, Southern Ocean using 234Th/238U disequilibria. Haiyang Xuebao (in Chinese), 29(4): 69–76Google Scholar
  18. Hurd C L, Berges J A, Osborne J, et al. 1995. An in vitro nitrate reductase assay for marine macroalgae: optimization and characterization of the enzyme for Fucus gardneri (Phaeophyta). Journal of Phycology, 31(5): 835–843, doi: 10.1111/j.00223646.1995.00835.xCrossRefGoogle Scholar
  19. Kemeny P C, Weigand M A, Zhang R, et al. 2016. Enzyme-level interconversion of nitrate and nitrite in the fall mixed layer of the Antarctic Ocean. Global Biogeochemical Cycles, 30(7): 1069–1085, doi: 10.1002/2015GB005350CrossRefGoogle Scholar
  20. Liu Chenggang, Ning Xiuren, Sun Jun, et al. 2004. Size structure of standing stock and productivity and new production of phytoplankton in the Prydz Bay and the adjacent Indian sector of the Southern Ocean during the austral summer of 2001/2002. Haiyang Xuebao (in Chinese), 26(6): 107–117Google Scholar
  21. Long M C, Thomas L N, Dunbar R B. 2012. Control of phytoplankton bloom inception in the Ross Sea, Antarctica, by Ekman restratification. Global Biogeochemical Cycles, 26(1): GB1006CrossRefGoogle Scholar
  22. Massom R A, Stammerjohn S E. 2010. Antarctic sea ice change and variability-Physical and ecological implications. Polar Science, 4(2): 149–186, doi: 10.1016/j.polar.2010.05.001CrossRefGoogle Scholar
  23. Mengesha S, Dehairs F, Fiala M, et al. 1998. Seasonal variation of phytoplankton community structure and nitrogen uptake regime in the Indian Sector of the Southern Ocean. Polar Biology, 20(4): 259–272, doi: 10.1007/s003000050302CrossRefGoogle Scholar
  24. Pu Shuzhen, Dong Zhaoqian. 2003. Progress in physical oceanographic studies of Prydz Bay and its adjacent oceanic area. Chinese Journal of Polar Research (in Chinese), 15(1): 53–64Google Scholar
  25. Ren Chunyan, Chen Min, Gao Zhongyong, et al. 2015. Stable carbon isotopic composition of suspended particulate organic matter in the Prydz Bay and its adjacent areas. Haiyang Xuebao (in Chinese), 37(12): 74–84Google Scholar
  26. Sarmiento J L, Gruber N, Brzezinski M A, et al. 2004. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 427(6969): 56–60, doi: 10.1038/nature02127CrossRefGoogle Scholar
  27. Smetacek V, Klaas C, Strass V H, et al. 2012. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature, 487(7407): 313–319, doi: 10.1038/nature11229CrossRefGoogle Scholar
  28. Smith W O Jr, Marra J, Hiscock M R, et al. 2000. The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep Sea Research Part II: Topical Studies in Oceanography, 47(15–16): 3119–3140, doi: 10.1016/S09670645(00)00061-8CrossRefGoogle Scholar
  29. Smith W O Jr, Nelson D M. 1986. Importance of ice edge phytoplankton production in the Southern Ocean. BioScience, 36(4): 251–257, doi: 10.2307/1310215CrossRefGoogle Scholar
  30. Sweeney C, Hansell D A, Carlson C A, et al. 2000. Biogeochemical regimes, net community production and carbon export in the Ross Sea, Antarctica. Deep Sea Research Part II: Topical Studies in Oceanography, 47(15–16): 3369–3394, doi: 10.1016/S09670645(00)00072-2CrossRefGoogle Scholar
  31. Vaz R A N, Lennon G W. 1996. Physical oceanography of the Prydz Bay region of Antarctic waters. Deep Sea Research Part I: Oceanographic Research Papers, 43(5): 603–641, doi: 10.1016/0967-0637(96)00028-3CrossRefGoogle Scholar
  32. Wu Li, Wang Rujian, Xiao Wenshen, et al. 2017. Productivity-climate coupling recorded in Pleistocene sediments off Prydz Bay (East Antarctica). Palaeogeography, Palaeoclimatology, Palaeoecology, 485: 260–270, doi: 10.1016/j.palaeo.2017.06.018CrossRefGoogle Scholar
  33. Zhang Run, Zheng Minfang, Chen Min, et al. 2014. An isotopic perspective on the correlation of surface ocean carbon dynamics and sea ice melting in Prydz Bay (Antarctica) during austral summer. Deep Sea Research Part I: Oceanographic Research Papers, 83: 24–33, doi: 10.1016/j.dsr.2013.08.006CrossRefGoogle Scholar
  34. Zhao Jun, Han Zhengbing, Pan Jianming. 2014. Spatial and temporal variation of phytoplankton indicated by multi-proxies in Prydz Bay, Antarctica. Research of Environmental Sciences (in Chinese), 27(6): 589–594Google Scholar
  35. Zhu Genhai, Pan Jianming, Yu Peisong, et al. 2007. Phytoplankton in Prydz Bay and its adjacent sea area of Antarctica during the austral summer (2005/2006). Proceedings of the China Symposium on Polar Science (in Chinese), Xining. Shanghai: Polar Research Institute of China, 72Google Scholar

Copyright information

© Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Run Zhang
    • 1
  • Qiang Ma
    • 1
    • 2
  • Min Chen
    • 1
    Email author
  • Minfang Zheng
    • 1
  • Jianping Cao
    • 1
  • Yusheng Qiu
    • 1
  1. 1.College of Ocean and Earth SciencesXiamen UniversityXiamenChina
  2. 2.Key Laboratory of Estuarine Ecological Security and Enviromental HealthXiamen University Tan Kah Kee CollegeZhangzhouChina

Personalised recommendations