Acta Oceanologica Sinica

, Volume 38, Issue 8, pp 8–16 | Cite as

Adsorption kinetics of platinum group elements onto macromolecular organic matter in seawater

  • Kai Liu
  • Xuelu GaoEmail author
  • Qianguo Xing
  • Fushan Chen


Adsorption kinetics of the interaction between Pt, Pd and Rh (defined here as platinum group elements, PGEs) ions and macromolecular organic compounds (MOCs, >10 kDa), including humic acid, carrageenan and bovine serum albumin, and different cutoff fractions of natural organic matter (>1 kDa and >3 kDa) obtained from seawater using centrifugal ultrafiltration devices were investigated. For a given element, all the adsorption kinetics did not reach equilibrium except the interaction between Pt and >1 kDa cutoff, and between Pd and humic acid. For all the tested MOCs, the adsorption kinetics could be divided into two stages, a rapid adsorption process in the first 8 h and the desorption stage after the first 8 h until the equilibrium. The change trend of partition coefficient (log10Kd) values with experiment time was consistent with that of the kinetic curves. However, in the interaction between PGE ions and natural dissolved organic matter (NDOM), an obvious difference in the change trends of log10Kd and kinetic curves was observed. It indicated that the partition behavior of PGE ions interacting with NDOM in seawater was a combined effect of different organic constituents. The adsorption and log10Kd of PGEs in the >1 kDa NDOM fraction were higher and more stable than those in the >3 kDa NDOM fraction. The results also indicated that the 1–3 kDa NDOM may dominate the interaction between PGEs ions and NDOM. Moreover, no kinetic model could perfectly simulate the adsorption process. It indicated that the colloidal struction and morphology of MOCs or NDOM in seawater might be inhomogeneous. Hence, the interaction between PGE ions and organic matter in seawater was a complicated process and needs further research.

Key words

adsorption kinetics platinum group elements macromolecular organic compounds natural organic matter seawater 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Yuxi Lu and Tianci Gao from Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences for their constant field and laboratory assistance, helpful advice and in-depth discussion.


  1. Baker A, Spencer R G M. 2004. Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Science of the Total Environment, 333(1–3): 217–232, doi: 10.1016/j.scitotenv.2004.04.013CrossRefGoogle Scholar
  2. Byrne R H, Yao Wensheng. 2000. Formation of palladium (II) hy-droxychloride complexes and precipitates in sodium chloride solutions and seawater. Geochimica et Cosmochimica Acta, 64(24): 4153–4156, doi: 10.1016/S0016-7037(00)00501-9CrossRefGoogle Scholar
  3. Clement N, Muresan B, Hedde M, et al. 2015. Assessment of palladium footprint from road traffic in two highway environments. Environmental Science and Pollution Research, 22(24): 20019–20031, doi: 10.1007/s11356-015-5241-9CrossRefGoogle Scholar
  4. Cobelo-Garcia A, Turner A, Millward G E, et al. 2007. Behaviour of palladium(II), platinum(IV), and rhodium(III) in artificial and natural waters: Influence of reactor surface and geochemistry on metal recovery. Analytica Chimica Acta, 585(2): 202–210, doi: 10.1016/j.aca.2006.12.029CrossRefGoogle Scholar
  5. Cobelo-Garcia A, Turner A, Millward G E. 2008. Fractionation and reactivity of platinum group elements during estuarine mixing. Environmental Science & Technology, 42(4): 1096–1011CrossRefGoogle Scholar
  6. Cobelo-Garcia A. 2013. Kinetic effects on the interactions of Rh (III) with humic acids as determined using size-exclusion chromatography (SEC). Environmental Science and Pollution Research, 20(4): 2330–2339, doi: 10.1007/sll356-012-1113-8CrossRefGoogle Scholar
  7. Colombo C, Oates C J, Monhemius A J, et al. 2008. Complexation of platinum, palladium and rhodium with inorganic ligands in the environment. Geochemistry: Exploration, Environment, Analysis, 8(1): 91–101, doi: 10.1144/1467-7873/07-151Google Scholar
  8. Cook S J, Fletcher WK. 1993. Distribution and behaviour of platinum in soils, sediments and waters of the Tulameen ultramafic complex, southern British Columbia, Canada. Journal of Geochemical Exploration, 46(3): 279–308, doi: 10.1016/0375-6742(93) 90026-1CrossRefGoogle Scholar
  9. Gueguen C, Guo Laodong, Wang Deli, et al. 2006. Chemical characteristics and origin of dissolved organic matter in the Yukon River. Biogeochemistry, 77(2): 139–155, doi: 10.1007/sl0533-005-0806-1CrossRefGoogle Scholar
  10. Guo Laodong, Santschi P H. 1997. Composition and cycling of colloids in marine environments. Reviews of Geophysics, 35(1): 17–40, doi: 10.1029/96RG03195CrossRefGoogle Scholar
  11. Guo Laodong, Santschi P H. 2007. Ultrafiltration and its applications to sampling and characterisation of aquatic colloids. In: Wilkinson K J, Lead J R, eds. Environmental Colloids and Particles: Behaviour, Separation and Characterisation. Wilkinson: John Wiley & Sons, 159–221CrossRefGoogle Scholar
  12. Guo Lei, Sun Changmei, Li Guiying, et al. 2009. Thermodynamics and kinetics of Zn(II) adsorption on crosslinked starch phosphates. Journal of Hazardous Materials, 161(1): 510–515, doi: 10.1016/j.jhazmat.2008.04.003CrossRefGoogle Scholar
  13. He Wei, Chen Meilian, Schlautman M A, et al. 2016. Dynamic exchanges between DOM and POM pools in coastal and inland aquatic ecosystems: A review. Science of the Total Environment, 551–552: 415–428, doi: 10.1016/j.scitotenv.2016.02.031Google Scholar
  14. Honeyman B D, Santschi P H. 1989. A Brownian-pumping model for oceanic trace metal scavenging: Evidence from Th isotopes. Journal of Marine Research, 47(4): 951–992, doi: 10.1357/002224089785076091CrossRefGoogle Scholar
  15. Ilina S M, Drozdova O Y, Lapitskiy S A, et al. 2014. Size fractionation and optical properties of dissolved organic matter in the continuum soil solution-bog-river and terminal Lake of a boreal watershed. Organic Geochemistry, 66: 14–24, doi: 10.1016/j.orggeochem.2013.10.008CrossRefGoogle Scholar
  16. Jin Rencheng, Xu Yanbin, Li Guihua, et al. 2013. Hierarchical chloro-phytum-like Bi2S3 architectures with high electrochemical performance. International Journal of Hydrogen Energy, 38(22): 9137–9144, doi: 10.1016/j.ijhydene.2013.05.082CrossRefGoogle Scholar
  17. Koek M, Kreuzer O P, Maier W D, et al. 2010. A review of the PGM industry, deposit models and exploration practices: Implications for Australia's PGM potential. Resources Policy, 35(1): 20–35, doi: 10.1016/j.resourpol.2009.08.001CrossRefGoogle Scholar
  18. Langendorff V, Cuvelier G, Michon C, et al. 2000. Effects of carrageen-an type on the behaviour of carrageenan/milk mixtures. Food Hydrocolloid, 14(4): 273–280, doi: 10.1016/S0268-005X(99)00064-8CrossRefGoogle Scholar
  19. Lin Peng, Chen Min, Guo Laodong. 2015. Effect of natural organic matter on the adsorption and fractionation of thorium and protactinium on nanoparticles in seawater. Marine Chemistry, 173: 291–301, doi: 10.1016/j.marchem.2014.08.006CrossRefGoogle Scholar
  20. Liu Yan, Chen Mingmao, Wang Shuaihua, et al. 2014. New insight into the stereoselective interactions of quinine and quinidine, with bovine serum albumin. Journal of Molecular Recognition, 27(5): 239–249, doi: 10.1002/jmr.2355CrossRefGoogle Scholar
  21. Lundin L, Odic K, Foster T J, et al. 2000. Phase separation in mixed carrageenan systems. In: Lai M, Lillford P J, Naik V M, et al., eds. Supramolecular and Colloidal Structures in Biomaterials and Biosubstrates. Singapore: World Scientific, 436–449CrossRefGoogle Scholar
  22. Mitra A, Sen I S. 2017. Anthrobiogeochemical platinum, palladium and rhodium cycles of earth: Emerging environmental contamination. Geochimica et Cosmochimica Acta, 216: 417–432, doi: 10.1016/j.gca.2017.08.025CrossRefGoogle Scholar
  23. Mudd G M. 2012. Key trends in the resource sustainability of platinum group elements. Ore Geology Reviews, 46: 106–117, doi: 10.1016/j.oregeorev.2012.02.005CrossRefGoogle Scholar
  24. Para J, Coble P G, Charriere B, et al. 2010. Fluorescence and absorption properties of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhone River. Biogeosciences, 7(12): 4083–4103, doi: 10.5194/bg-7-4083-2010CrossRefGoogle Scholar
  25. Pawlak J, Łodyga-Chrušcińska E, Chrustowicz J. 2014. Fate of platinum metals in the environment. Journal of Trace Elements in Medicine and Biology, 28(3): 247–254, doi: 10.1016/j.jtemb.2014.03.005CrossRefGoogle Scholar
  26. Ravindra K, Bencs L, Van Grieken R. 2004. Platinum group elements in the environment and their health risk. Science of the Total Environment, 318(1–3): 1–43, doi: 10.1016/S0048-9697(03) 00372-3CrossRefGoogle Scholar
  27. Reith F, Campbell S G, Ball A S, et al. 2014. Platinum in Earth surface environments. Earth-Science Reviews, 131: 1–21, doi: 10.1016/j.earscirev.2014.01.003CrossRefGoogle Scholar
  28. Ruchter N, Sures B. 2015. Distribution of platinum and other traffic related metals in sediments and clams (Corbicula sp.). Water Research, 70: 313–324, doi: 10.1016/j.watres.2014.12.011CrossRefGoogle Scholar
  29. Sorensen S N, Engelbrekt C, Lützhøft H C H, et al. 2016. A multimethod approach for investigating algal toxicity of platinum nanoparticles. Environmental Science & Technology, 50(19): 10635–10643CrossRefGoogle Scholar
  30. Sucha V, Mihaljevic M, Ettler V, et al. 2016. The pH-dependent release of platinum group elements (PGEs) from gasoline and diesel fuel catalysts: Implication for weathering in soils. Journal of Environmental Management, 171: 52–59CrossRefGoogle Scholar
  31. Sures B, Zimmermann S. 2007. Impact of humic substances on the aqueous solubility, uptake and bioaccumulation of platinum, palladium and rhodium in exposure studies with Dreissena polymorpha. Environmental Pollution, 146(2): 444–451, doi: 10.1016/j.envpol.2006.07.004CrossRefGoogle Scholar
  32. Takahashi Y, Minai Y, Ambe S, et al. 1999. Comparison of adsorption behavior of multiple inorganic ions on kaolinite and silica in the presence of humic acid using the multitracer technique. Geochimica et Cosmochimica Acta, 63(6): 815–836, doi: 10.1016/S0016-7037(99)00065-4CrossRefGoogle Scholar
  33. Turner A, Crussell M, Millward G E, et al. 2006. Adsorption kinetics of platinum group elements in river water. Environmental Science & Technology, 40(5): 1524–1531CrossRefGoogle Scholar
  34. Verdugo P, Alldredge A L, Azam F, et al. 2004. The oceanic gel phase: a bridge in the DOM-POM continuum. Marine Chemistry, 92(1–4): 67–85, doi: 10.1016/j.marchem.2004.06.017CrossRefGoogle Scholar
  35. Wiseman C L S, Zereini F. 2009. Airborne particulate matter, platinum group elements and human health: A review of recent evidence. Science of the Total Environment, 407(8): 2493–2500, doi: 10.1016/j.scitotenv.2008.12.057CrossRefGoogle Scholar
  36. Wood S A. 1996. The role of humic substances in the transport and fixation of metals of economic interest (Au, Pt, Pd, U, V). Ore Geology Reviews, 11(1-3): 1–31, doi: 10.1016/0169-1368(95) 00013-5CrossRefGoogle Scholar
  37. Wood S A, Tait C D, Vlassopoulos D, et al. 1994. Solubility and spectroscopic studies of the interaction of Palladium with simple carboxylic acids and fulvic acid at low temperature. Geochimica et Cosmochimica Acta, 58(2): 625–637, doi: 10.1016/0016-7037(94)90493-6CrossRefGoogle Scholar
  38. Xu Tongwen, Fu Rongqiang, Yan Lifeng. 2003. A new insight into the adsorption of bovine serum albumin onto porous polyethylene membrane by zeta potential measurements, FTIR analyses, and AFM observations. Journal of Colloid and Interface Science, 262(2): 342–350, doi: 10.1016/S0021-9797(03)00208-XCrossRefGoogle Scholar
  39. Xu Huacheng, Guo Laodong. 2017. Molecular size-dependent abundance and composition of dissolved organic matter in river, lake and sea waters. Water Research, 117: 115–126, doi: 10.1016/j.watres.2017.04.006CrossRefGoogle Scholar
  40. Yang Weifeng, Guo Laodong, Chuang C Y, et al. 2013. Adsorption characteristics of 210Pb, 210Po and 7Be onto micro-particle surfaces and the effects of macromolecular organic compounds. Geochimica et Cosmochimica Acta, 107: 47–64, doi: 10.1016/j.gca.2012.12.039CrossRefGoogle Scholar
  41. Ye Jinfu, Lin Dongqiang, Yao Shanjing. 2007. Zeta potential of bovine serum albumin and its correlation to retention factor of ion exchange chromatography. Journal of Chemical Engineering of Chinese Universities (in Chinese), 21(3): 381–385Google Scholar
  42. Zimmermann S, Wolff C, Sures B. 2017. Toxicity of platinum, palladium and rhodium to Daphnia magna in single and binary metal exposure experiments. Environmental Pollution, 224: 368–376, doi:10.1016/j.envpol.2017.02.016CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kai Liu
    • 1
    • 2
    • 3
  • Xuelu Gao
    • 1
    • 2
    Email author
  • Qianguo Xing
    • 1
  • Fushan Chen
    • 4
  1. 1.CAS Key Laboratory of Coastal Environmental Processes and Ecological RemediationYantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Dongying Municipal Bureau of Marine Development and FisheriesDongyingChina
  4. 4.College of Marine Sciences and BioengineeringQingdao University of Science and TechnologyQingdaoChina

Personalised recommendations