Advertisement

Cloning, characterization and expression analysis of a microsomal glutathione S-transferase gene from the seagrass Zostera marina

  • Wenjie Yan
  • Jiao Liu
  • Samphal Seng
  • Bin Zhou
  • Kuke DingEmail author
Article

Abstract

The response of glutathione S-transferase (GST) in Zostera marina to temperature variation was analyzed at molecular level by cloning the microsomal GST gene and texting the microsomal GST expression regularity under different temperature. Specific speaking, express ZmGST in Escherichia coli, then purify the recombinant protein and make the thermal stability analysis. Therefore, the experiments were carried out to provide a theoretical basis for the further elaboration to the population degradation mechanisms of Z. marina. In conclusion, the thermostability and the response of ZmGST gene to temperature changes can determine its temperature tolerance range, and affect its resilience in turn.

Keywords

Zostera marina antioxidant enzyme glutathione S-transferase (GST) temperature enzyme activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are thankful to all of the members of the Marine Ecology Laboratory (College of Marine Life, Ocean University of China) for their experimental and helpful proposals. Without their help, this work cannot go so well.

References

  1. Costanza R, d’Arge R, De Groot R, et al. 1997. The value of the world’s ecosystem services and natural capital. Nature, 387(6630): 253–260, doi:  https://doi.org/10.1038/387253a0 CrossRefGoogle Scholar
  2. Den Hartog C. 1970. The Seagrasses of the World. Amsterdam: North Holland Publishing Company, 265Google Scholar
  3. Dixon D P, Lapthorn A, Edwards R. 2002. Plant glutathione transferases. Genome Biology, 3(3): eviews3004.1CrossRefGoogle Scholar
  4. Edwards R, Dixon D P, Walbot V. 2000. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends in Plant Science, 5(5): 193–198, doi:  https://doi.org/10.1016/S1360-1385(00)01601-0 CrossRefGoogle Scholar
  5. Fourqurean J W, Duarte C M, Kennedy H, et al. 2012. Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience, 5(7): 505–509, doi:  https://doi.org/10.1038/ngeo1477 CrossRefGoogle Scholar
  6. Green E P, Short F T. 2003. World Atlas of Seagrasses. Berkeley: University of California Press, 185–192Google Scholar
  7. Hemminga M A, Duarte C M. 2000. Seagrass Ecology. Cambridge: Cambridge University Press, 298CrossRefGoogle Scholar
  8. Larkum A W D, Orth R J, Duarte C M. 2006. Seagrasses: Biology, Ecology and Conservation. Netherlands: Springer, 25–50Google Scholar
  9. Les D H, Cleland M A, Waycott M. 1997. Phylogenetic studies in Alismatidae, II: evolution of marine angiosperms (seagrasses) and hydrophily. Systematic Botany, 22(3): 443–463, doi:  https://doi.org/10.2307/2419820 CrossRefGoogle Scholar
  10. Logue J, Tiku P, Cossins A R. 1995. Heat injury and resistance adaptation in fish. Journal of Thermal Biology, 20(1–2): 191–197CrossRefGoogle Scholar
  11. Mannervik B, Danielson U H, Ketterer B. 1988. Glutathione transferase-structure and catalytic activity. Critical Reviews in Biochemistry, 23(2): 283–337CrossRefGoogle Scholar
  12. Martin J R, Specht J E, Williams J H, et al. 1978. Temperature tolerance in soybeans: I. Evaluation of a technique for assessing cellular membrane thermostability. Crop Science, 19(1): 75–81CrossRefGoogle Scholar
  13. Olsen J L, Rouzé P, Verhelst B, et al. 2016. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature, 530(7590): 331–335, doi:  https://doi.org/10.1038/nature16548 CrossRefGoogle Scholar
  14. Rushmore T H, Pickett C B. 1993. Glutathione S-transferases, structure, regulation, and therapeutic implications. The Journal of Biological Chemistry, 268(16): 11475–11478Google Scholar
  15. Sheehan D, Meade G, Foley V M, et al. 2001. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochemical Journal, 360(1): 1–16, doi:  https://doi.org/10.1042/bj3600001 CrossRefGoogle Scholar
  16. Wilce M C J, Parker M W. 1994. Structure and function of glutathione S-transferases. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1205(1): 1–18, doi:  https://doi.org/10.1016/0167-4838(94)90086-8 CrossRefGoogle Scholar
  17. Wright J P, Jones C G. 2006. The concept of organisms as ecosystem engineers ten years on: progress, limitations, and challenges. BioScience, 56(3): 203–209, doi:  https://doi.org/10.1641/0006-3568(2006)056[0203:TCOOAE]2.0.CO;2 CrossRefGoogle Scholar
  18. Yan Fei, Yang Wenkui, Li Xinyang, et al. 2008. A trifunctional enzyme with glutathione S-transferase, glutathione peroxidase and superoxide dismutase activity. Biochimica et Biophysica Acta (BBA)-General Subjects, 1780(6): 869–872, doi:  https://doi.org/10.1016/j.bbagen.2008.03.003 CrossRefGoogle Scholar
  19. Zhang Yi, Lu Tiegang. 2011. The research of Reactive Oxygen Species (ROS) in plants. Current Biotechnology (in Chinese), 1(4): 242–248Google Scholar

Copyright information

© Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wenjie Yan
    • 1
  • Jiao Liu
    • 2
  • Samphal Seng
    • 3
  • Bin Zhou
    • 1
  • Kuke Ding
    • 4
    • 5
    Email author
  1. 1.Department of Marine Ecology, College of Marine Life SciencesOcean University of ChinaQingdaoChina
  2. 2.Institute of OceanologyChinese Academy of SciencesQingdaoChina
  3. 3.Faculty of Fisheries & AquacultureRoyal University of AgriculturePhnom PenhCambodia
  4. 4.National Institute for Radiological ProtectionChinese Center for Disease Control and PreventionBeijingChina
  5. 5.Key Laboratory of Radiological Protection and Nuclear EmergencyChinese Center for Disease Control and PreventionBeijingChina

Personalised recommendations