Acta Oceanologica Sinica

, Volume 38, Issue 8, pp 94–100 | Cite as

An improved frequency shift method for ATI-SAR flat earth phase removal

  • Yubin Zhang
  • Jie Zhang
  • Junmin Meng
  • Chenqing FanEmail author


An improved frequency shift method is proposed to remove the flat earth phase in ATI-SAR ocean surface motion detection in this study. First, two conventional flat earth effect removal methods (i.e., the frequency shift method and the orbital parameter method) are introduced and compared. Then, two improvements to frequency shift method are suggested. In the first improvement, the phase diagram is divided into several sub-blocks to calculate the phase fringe frequency. In the second improvement, a function between the phase of land regions and position is fitted to correct the residual flat earth phase based on the phase of the land regions that tend toward zero in an along-track interferogram. It is found that the improved frequency shift method is greatly improved; and it agrees well with the orbital parameter method, and achieves similar accuracy.

Key words

flat earth phase ATI-SAR frequency shift orbital parameter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank German Aerospace Center (DLR) for providing the TanDEM-X formation ATI data.


  1. Ai Bin, Li Xia. 2009. An analysis of different InSAR flattening algorithms and their influence on DEM accuracy. RemoteSensing for Land & Resources (in Chinese), 21(2): 3–12Google Scholar
  2. Bamler R, Hartl P. 1998. Synthetic aperture radar interferometry. InverseProblems, 14(4): R1–R54, doi: 10.1088/0266-5611/14/4/001Google Scholar
  3. Cao Yongxing, Fan Zhong, Chen Yan, et al. 2013. Flat earth removal and baseline estimation based on orbit parameters using Radarsat-2 image. In: Proceedings of 2013 IEEE Proceedings of the Geoscience and Remote Sensing Symposium. Melbourne, VIC, Australia: IEEE, 346–349Google Scholar
  4. Gatelli F, Guamieri A M, Parizzi F, et al. 1994. The wavenumber shift in SAR interferometry. IEEETransactions on Geoscience and Remote Sensing, 32(2): 4–855, doi: 10.1109/36.298013Google Scholar
  5. Geudtner D, Schwäbisch M. 1996. An algorithm for precise reconstruction of InSAR imaging geometry: application to “Flat-Earth” phase removal, phase-to-height conversion and geocoding of InSAR-derived DEMs. In: Proceedings of the EUSAR'96-Konferenz. Königswinter, Germany: EUSAR, 249–252Google Scholar
  6. Kimura H, Todo M. 1997. Baseline estimation using ground points for interferometric SAR. In: Proceedings of 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. RemoteSensing—A Scientific Vision for Sustainable Development. Singapore, Singapore: IEEE, 442–444CrossRefGoogle Scholar
  7. Kohlhase A O, Feigl K L, Massonnet D. 2003. Applying differential InSAR to orbital dynamics: a new approach for estimating ERS trajectories. Journalof Geodesy, 77(2): 9–493, doi: 10.1007/s00190-003-0336-3Google Scholar
  8. Krieger G, Moreira A, Fiedler H, et al. 2007. TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEETransactions on Geoscience and Remote Sensing, 45(2): 11–3317, doi: 10.1109/TGRS.2007.900693Google Scholar
  9. Moreira J, Schwabisch M, Fornaro G, et al. 1995. X-SAR interferometry: first results. IEEETransactions on Geoscience and Remote Sensing, 33(2): 4–950, doi: 10.1109/36.406681Google Scholar
  10. Peng S R, He K X, Wang Y N, et al. 2009. A high accurate approach for InSAR flat earth effect removal. In: Proceedings of 2009 International Conference on Measuring Technology and Mechatronics Automation. Zhangjiajie, Hunan, China: IEEE, 742–745CrossRefGoogle Scholar
  11. Romeiser R, Runge H, Suchandt S, et al. 2014. Quality assessment of surface current fields from TerraSAR-X and TanDEM-X along-track interferometry and Doppler centroid analysis. IEEETransactions on Geoscience and Remote Sensing, 52(2): 5–2759, doi: 10.1109/TGRS.2013.2265659Google Scholar
  12. Romeiser R, Suchandt S, Runge H, et al. 2010. First analysis of TerraSAR-X along-track InSAR-derived current fields. IEEETransactions on Geoscience and Remote Sensing, 48(2): 2–820, doi: 10.1109/TGRS.2009.2030885CrossRefGoogle Scholar
  13. Rosen P A, Hensley S, Joughin I R, et al. 2000. Synthetic aperture radar interferometry. Proceedingsof the IEEE, 88(2): 3–333, doi: 10.1109/5.838084Google Scholar
  14. Stangl M, Werninghaus R, Schweizer B, et al. 2006. TerraSAR-X technologies and first results. IEEProceedings-Radar, Sonar and Navigation, 153(2): 2–86, doi: 10.1049/ip-rsn:20045119Google Scholar
  15. Suchandt S, Runge H. 2015. Ocean surface observations using the TanDEM-X satellite formation. IEEEJournal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(2): 11–5096, doi: 10.1109/JSTARS.2015.2446893Google Scholar
  16. Wang Lucai, Wang Yaonan, Dai Yuxing. 2004. An improving algorithm of eliminating the horizontal ground effect of phase interference graph in InSAR imaging. Journalof Natural Science of Hunan Normal University (in Chinese), 27(2): 3–51Google Scholar
  17. Werninghaus R, Buckreuss S. 2010. The TerraSAR-X mission and system design. IEEETransactions on Geoscience and Remote Sensing, 48(2): 2–606, doi: 10.1109/TGRS.2009.2031062CrossRefGoogle Scholar
  18. Yoon Y T, Eineder M, Yague-Martinez N, et al. 2009. TerraSAR-X precise trajectory estimation and quality assessment. IEEETransactions on Geoscience and Remote Sensing, 47(2): 6–1859, doi: 10.1109/TGRS.2008.2006983Google Scholar
  19. Zebker H A, Rosen P A, Hensley S. 1997. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. Journalof Geophysical Research: Solid Earth, 102(B4): 7547–7563, doi: 10.1029/96JB03804CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yubin Zhang
    • 1
    • 2
  • Jie Zhang
    • 1
  • Junmin Meng
    • 1
  • Chenqing Fan
    • 1
    Email author
  1. 1.First Institute of OceanographyMinistry of Natural ResourcesQingdaoChina
  2. 2.College of Information Science and EngineeringOcean University of ChinaQingdaoChina

Personalised recommendations