Acta Oceanologica Sinica

, Volume 38, Issue 8, pp 86–93 | Cite as

A 10-year wave energy resource assessment and trends of Indonesia based on satellite observations

  • Amiruddin
  • Agustinus RibalEmail author
  • Khaeruddin
  • Sri Astuti Thamrin


Wave energy resource assessment and trends around Indonesian’s ocean has been carried out by means of analyzing satellite observations. Wave energy flux or wave power can be approximated using parameterized sea states derived from satellite data. Unfortunately, only some surface parameters can be measured from remote sensing satellites, for example for ocean surface waves: significant wave height. Others, like peak wave period and energy period are not available, but can instead be estimated using empirical models. The results have been assessed by meteorological season. The assessment shows clearly where and when the wave power resource is promising around Indonesian’s ocean. The most striking result was found from June to August, in which about 30–40 kW/m (the 90th percentile: 40–60 kW/m, the 99th percentile: 50–70 kW/m) wave power energy on average has been found around south of the Java Island. The significant trends of wave energy at the 95% level have also been studied and it is found that the trends only occurred for the extreme cases, which is the 99th percentile (i.e., highest 1%). Wave power energy could increase up to 150 W/m per year. The significant wave heights and wave power have been compared with the results obtained from global wave model hindcast carried out by wave model WAVEWATCH III. The comparisons indicated excellent agreements.

Key words

wave power energy trends ENVISAT altimeter significant wave height wave period 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ardhuin F, Rogers E, Babanin A V, et al. 2010. Semiempirical dissipation source functions for ocean waves. Part I: definition, calibration, and validation. Journal of Physical Oceanography, 40@@(9): 1917–1941, doi: 10.1175/2010JPO4324.1CrossRefGoogle Scholar
  2. Babanin Alexander, Zieger Stefan, Ribal Agustinus. 2014a. Satellite Observations of Waves in the Arctic Ocean. 22nd IAHR International Symposium on Ice. Singapore: International Association for Hydro-Environment Engineering and Research (IAHR), 798–805Google Scholar
  3. Babanin Alexander, Zieger Stefan, Ribal Agustinus. 2014b. Ocean waves in the Arctic: observations and trends. International Symposium on Sea Ice in a Changing Environment. Hobart, Australia: The International Glaciological Society, 69A576Google Scholar
  4. BPPT. 2014. Outlook Energi Indonesi. 2014. Jakarta: Badan Pengkaji-an dan Penerapan Teknologi (BPPT), 793Google Scholar
  5. Cornett A M. 2008. A global wave energy resource assessment. Sea Technology, 50(4): 59Google Scholar
  6. Durrant T H, Greenslade D J M, Hemer M A, et al. 2014. A Global Wave Hindcast Focussed on the Central and South Pacific. Melbourne: Bureau of Meteorology Australia and CSIROGoogle Scholar
  7. Gommenginger C, Cotton D, Srokosz M, et al. 2005. Ocean wave period from satellite altimeters. In: Lacoste H, Ouwehand L, eds. Proceedings of th. 200. Envisat & ERS Symposium. Salzburg, Austria: CD-RomGoogle Scholar
  8. Gommenginger C P, Srokosz M A, Challenor P G, et al. 2003. Measuring ocean wave period with satellite altimeters: A simple empirical model. Geophysical Research Letters, 30(22): 2150CrossRefGoogle Scholar
  9. Gommenginger C P, Srokosz M A, Challenor P G, et al. 2004. Measuring ocean wave period and wave height with satellite altimeters. In: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering. Vancouver, British Columbia, Canada: The American Society of Mechanical Engineers (ASME), 353–360Google Scholar
  10. Hagerman G. 2001. Southern new england wave energy resource potential. In: Building Energy 2001. Boston, MA, USA: Tufts University, 13Google Scholar
  11. Hemer M A, Zieger S, Durrant T, et al. 2017. A revised assessment of Australia’s national wave energy resource. Renewable Energy. 114. 85–107, doi: 10.1016/j.renene.2016.08.039CrossRefGoogle Scholar
  12. Kendall M G. 1955. Rank Correlation Methods. 2nd ed. London: Charles Griffin & Co. Ltd, 936Google Scholar
  13. Mann H B. 1945. Nonparametric tests against trend. Econometrica, 13@@(3): 245–259, doi: 10.2307/1907187CrossRefGoogle Scholar
  14. Mudho Yulistyo. 2011. Marine and Fisheries in Figure. 2011. Jakarta: Ministry of Marine Affairs and FisheriesGoogle Scholar
  15. Peacock D. 2015. IEC TS 62600-101. 2015. Marine energy-Wave, tidal and other water current converters-Par. 101. Wave energy resource assessment and characterization. Geneva, Switzerland: The International Electrotechnical Commission, 1–42Google Scholar
  16. Pontes M T. 1998. Assessing the European wave energy resource. Journal of Offshore Mechanics and Arctic Engineering, 120@@(4): 226–231, doi: 10.1115/1.2829544CrossRefGoogle Scholar
  17. Prasodjo E, Nurzaman H, Walujanto, et al. 2016. Indonesia Energy Outloo. 2016. Jakarta: National Energy Council, 940Google Scholar
  18. Purnamasari R, Ribal A, Kusuma J. 2018. Prediction of tidal elevations and barotropic currents in the gulf of bone. Journal of Physics: Conference Series. 979. 012071, doi: 10.1088/1742-6596/979/1/012071Google Scholar
  19. Quartly G D, Srokosz M A, McMillan A C. 2001. Analyzing altimeter artifacts: statistical properties of ocean waveforms. Journal of Atmospheric and Oceanic Technology, 18@@(12): 2074–2091, doi: 10.1175/1520-0426(2001)018<2074:AAASPO>2.0.CO;2CrossRefGoogle Scholar
  20. Queffeulou P, Croizé-Fillon D. 2012. Global altimeter SWH data set-versio. 9. 0. Plouzané, France: IFREMERGoogle Scholar
  21. Rascle N, Ardhuin F, Queffeulou P, et al. 2008. A global wave parameter database for geophysical applications. Par. 1. Wave-current-turbulence interaction parameters for the open ocean based on traditional parameterizations. Ocean Modelling, 25(3–4): 154–171, doi: 10.1016/j.ocemod.2008.07.006CrossRefGoogle Scholar
  22. Ribal A, Amir A K, Toaha S, et al. 2017. Tidal current energy resource assessment around buton island, southeast Sulawesi, Indonesia. International Journal of Renewable Energy Research, 7@@(2): 857–865Google Scholar
  23. Ribal A, Zieger S. 2016. Wave energy resource assessment based on satellite observations around Indonesia. AIP Conference Proceedings. 1737. 060001, doi: 10.1063/1.4949308Google Scholar
  24. Sen P K. 1968. Estimates of the regression coefficient based on kendall’s tau. Journal of the American Statistical Association, 63@@(324): 1379–1389, doi: 10.1080/01621459.1968.10480934CrossRefGoogle Scholar
  25. Tolman H L. 2009. User manual and system documentation of WAVEWATCH III versio. 3. 14. Technical note, MMAB Contribution. Camp Springs, USA: National Centers for Environmental Prediction, 220Google Scholar
  26. Vinoth J, Young I R. 2011. Global estimates of extreme wind speed and wave height. Journal of Climate, 24@@(6): 1647–1665, doi: 10.1175/2010JCLI3680.1CrossRefGoogle Scholar
  27. Wan Yong, Zhang Jie, Meng Junmin, et al. 2016. Study on wave energy resource assessing method based on altimeter data-A case study in Northwest Pacific. Acta Oceanologica Sinica, 35@@(3): 117–129, doi: 10.1007/s13131-016-0804-2CrossRefGoogle Scholar
  28. Young I R, Zieger S, Babanin A V. 2011. Global trends in wind speed and wave height. Science, 332@@(6028): 451–455, doi: 10.1126/sci-ence.1197219CrossRefGoogle Scholar
  29. Zheng C W, Pan J, Li J X. 2013. Assessing the China Sea wind energy and wave energy resources fro. 198. t. 2009. Ocean Engineering. 65. 39–48, doi: 10.1016/j.oceaneng.2013.03.006CrossRefGoogle Scholar
  30. Zieger S. 2010. Long term trends in ocean wind speed and wave height [dissertation]. Melbourne: Swinburne University of TechnologyGoogle Scholar
  31. Zieger S, Babanin A V, Erick R W, et al. 2015. Observation-based source terms in the third-generation wave model WAVE-WATCH. Ocean Modelling. 96. 2–25, doi: 10.1016/j.ocemod. 2015.07.014CrossRefGoogle Scholar
  32. Zieger S, Babanin A V, Ribal A. 2013. Wave climate in the marginal ice zone as observed by altimeters. In: American Geophysical Union Fall Meeting. San Francisco, CA, US: AGUGoogle Scholar
  33. Zieger S, Babanin A V, Young I R. 2014. Changes in ocean surface wind with a focus on trends in regional and monthly mean values. Deep Sea Research Part I: Oceanographic Research Papers. 86. 56–67, doi: 10.1016/j.dsr.2014.01.004CrossRefGoogle Scholar
  34. Zieger S, Vinoth J, Young I R. 2009. Joint calibration of multiplatform altimeter measurements of wind speed and wave height over the Pas. 2. Years. Journal of Atmospheric and Oceanic Technology, 26@@(12): 2549–2564, doi: 10.1175/2009JTECHA1303.1CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Amiruddin
    • 1
  • Agustinus Ribal
    • 2
    Email author
  • Khaeruddin
    • 2
  • Sri Astuti Thamrin
    • 2
  1. 1.Department of Physics, Faculty of Mathematics and Natural SciencesHasanuddin UniversityMakassarIndonesia
  2. 2.Department of Mathematics, Faculty of Mathematics and Natural SciencesHasanuddin UniversityMakassarIndonesia

Personalised recommendations