Acta Oceanologica Sinica

, Volume 38, Issue 8, pp 64–71 | Cite as

Phylogenetic diversity of dimethylsulfoniopropionatedependent demethylase gene dmdA in distantly related bacteria isolated from Arctic and Antarctic marine environments

  • Yinxin ZengEmail author


Dimethylsulfoniopropionate (DMSP) is mainly produced by marine phytoplankton as an osmolyte, antioxidant, predator deterrent, or cryoprotectant. DMSP is also an important carbon and sulfur source for marine bacteria. Bacteria may metabolize DMSP via the demethylation pathway involving the DMSP demethylase gene (dmdA) or the cleavage pathway involving several different DMSP lyase genes. Most DMSP released into seawater is degraded by bacteria via demethylation. To test a hypothesis that the high gene frequency of dmdA among major marine taxa results in part from horizontal gene transfer (HGT) events, a total of thirty-one bacterial strains were isolated from Arctic Kongsfjorden seawater in this study. Analysis of 16S rRNA gene sequences showed that, except for strains BSw22118, BSw22131 and BSw22132 belonging to the genera Colwellia, Pseudomonas and Glaciecola, respectively, all bacteria fell into the genus Pseudoalteromonas. DmdA genes were detected in five distantly related bacterial strains, including four Arctic strains (Pseudoalteromonas sp. BSw22112, Colwellia sp. BSw22118, Pseudomonas sp. BSw22131 and Glaciecola sp. BSw22132) and one Antarctic strain (Roseicitreum antarcticum ZS2-28). Their dmdA genes showed significant similarities (97.7%–98.3%) to that of Ruegeria pomeroyi DSS-3, which was originally isolated from temperate coastal seawater. In addition, the sequence of the gene transfer agent (GTA) capsid protein gene (g5) detected in Antarctic strain ZS2-28 exhibited a genetically closely related to that of Ruegeria pomeroyi DSS-3. Among the five tested strains, only Pseudomonas sp. BSw22131 could grow using DMSP as the sole carbon source. The results of this study support the hypothesis of HGT for dmdA among taxonomically heterogeneous bacterioplankton, and suggest a wide distribution of functional gene (i.e., dmdA) in global marine environments.

Key words

dimethylsulfoniopropionate-dependent demethylase gene (dmdAhorizontal gene transfer marine bacteria Arctic Antarctic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



I appreciate the assistance of the Chinese Arctic and Antarctic Administration (CAA) who organized the Chinese Arctic Yellow River Station Expedition in 2016.


  1. Andreae M O. 1990. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Marine Chemistry, 30: 1–29, doi: 10.1016/0304-4203(90)90059-LCrossRefGoogle Scholar
  2. Bürgermeister S, Georgii H W, Zimmermann R L, et al. 1990. On the biogenic origin of dimethylsulfide: relation between chlorophyll, ATP, organismic DMSP, phytoplankton species, and DMS distribution in Atlantic surface water and atmosphere. Journal of Geophysical Research: Atmosphere, 95(D12): 20607–20615, doi: 10.1029/JD095iD12p20607CrossRefGoogle Scholar
  3. Biers E J, Wang Kui, Pennington C, et al. 2008. Occurrence and expression of gene transfer agent genes in marine bacterioplank-ton. Applied and Environmental Microbiology, 74(10): 2933–2939, doi: 10.1128/AEM.02129-07CrossRefGoogle Scholar
  4. Bullock H A, Luo Haiwei, Whitman W B. 2017. Evolution of dimethyl-sulfoniopropionate metabolism in marine phytoplankton and bacteria. Frontiers in Microbiology, 8: 637, doi: 10.3389/ fmicb.2017.00637Google Scholar
  5. Charlson R J, Lovelock J E, Andreae M O, et al. 1987. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326(6114): 655–661, doi: 10.1038/326655a0Google Scholar
  6. Cui Yingshun, Suzuki S, Omori Y, et al. 2015. Abundance and distribution of dimethylsulfoniopropionate degradation genes and the corresponding bacterial community structure at dimethyl sulfide hot spots in the tropical and subtropical Pacific Ocean. Applied and Environmental Microbiology, 81(12): 4184–4194, doi: 10.1128/AEM.03873-14CrossRefGoogle Scholar
  7. Curson A R J, Todd J D, Sullivan M J, et al. 2011. Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nature Reviews Microbiology, 9(12): 849–859, doi: 10.1038/nrmicro2653CrossRefGoogle Scholar
  8. Fu Yunyun, MacLeod D M, Rivkin R B, et al. 2010. High diversity of Rhodobacterales in the subarctic North Atlantic Ocean and gene transfer agent protein expression in isolated strains. Aquatic Microbial Ecology, 59(3): 283–293, doi: 10.3354/ ame01398CrossRefGoogle Scholar
  9. Fuhrman J A, Lee S H, Masuchi Y, et al. 1994. Characterization of marine prokaryotic communities via DNA and RNA. Microbial Ecology, 28(2): 133–145, doi: 10.1007/BF00166801CrossRefGoogle Scholar
  10. Gonzalez J M, Covert J S, Whitman W B, et al. 2003. Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. International Journal of Systematic and Evolutionary Microbiology, 53(5): 1261–1269, doi: 10.1099/ ijs.0.02491-0CrossRefGoogle Scholar
  11. Gonzalez J M, Kiene R P, Moran M A. 1999. Transformation of sulfur compounds by an abundant lineage of marine bacteria in the a-subclass of the class Proteobacteria. Applied and Environmental Microbiology, 65(9): 3810–3819Google Scholar
  12. Guillard R R L, Ryther J H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 8(2): 229–239, doi: 10.1139/m62-029CrossRefGoogle Scholar
  13. Herlemann D P R, Woelk J, Labrenz M, et al. 2014. Diversity and abundance of “Pelagibacterales” (SAR11) in the Baltic Sea salinity gradient. Systematic and Applied Microbiology, 37(8): 601–604, doi: 10.1016/j.syapm.2014.09.002CrossRefGoogle Scholar
  14. Hollibaugh J T, Bano N, Ducklow H W. 2002. Widespread distribution in polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria. Applied and Environmental Microbiology, 68(3): 1478–1484, doi: 10.1128/ AEM.68.3.1478-1484.2002CrossRefGoogle Scholar
  15. Howard E C, Henriksen J R, Buchan A, et al. 2006. Bacterial taxa that limit sulfur flux from the ocean. Science, 314(5799): 649–652, doi: 10.1126/science.ll30657Google Scholar
  16. Howard E C, Sun Shulei, Biers E J, et al. 2008. Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environmental Microbiology, 10(9): 2397–2410, doi: 10.1111/J.1462-2920.2008.01665.XCrossRefGoogle Scholar
  17. Howard E C, Sun Shulei, Reisch C R, et al. 2011. Changes in dimethyl-sulfoniopropionate demethylase gene assemblages in response to an induced phytoplankton bloom. Applied and Environmental Microbiology, 77(2): 524–531, doi: 10.1128/ AEM.01457-10CrossRefGoogle Scholar
  18. Huber T, Faulkner G, Hugenholtz P. 2004. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics, 20(14): 2317–2319, doi: 10.1093/bioinformat-ics/bth226CrossRefGoogle Scholar
  19. Johnston A W B, Green R T, Todd J D. 2016. Enzymatic breakage of dimethylsulfoniopropionate—a signature molecule for life at sea. Current Opinion in Chemical Biology, 31: 58–65, doi: 10.1016/j.cbpa.2016.01.011CrossRefGoogle Scholar
  20. Johnston A W B, Todd J D, Sun Lei, et al. 2008. Molecular diversity of bacterial production of the climate-changing gas, dimethyl sulphide, a molecule that impinges on local and global symbioses. Journal of Experimental Botany, 59(5): 1059–1067, doi: 10.1093/jxb/erm264CrossRefGoogle Scholar
  21. Karsten U, Kiick K, Vogt C, et al. 1996. Dimethylsulfoniopropionate production in phototrophic organisms and its physiological functions as a cryoprotectant. In: Kiene R P, Visscher P T, Keller M D, et al., eds. Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. New York: Plenum Press, 143–153CrossRefGoogle Scholar
  22. Keller M D. 1989. Dimethyl sulfide production and marine phytoplankton: the importance of species composition and cell size. Biological Oceanography, 6(5-6): 375–382, doi: 10.1080/01965581. 1988.10749540Google Scholar
  23. Kiene R P. 1990. Dimethyl sulfide production from dimethylsulfoniopropionate in coastal seawater samples and bacterial cultures. Applied and Environmental Microbiology, 56(11): 3292–3297Google Scholar
  24. Kiene R P, Linn L J. 2000. Distribution and turnover of dissolved DMSP and its relationship with bacterial production and dimethyl-sulfide in the Gulf of Mexico. Limnology and Oceanography, 45(4): 849–861, doi: 10.4319/lo.2000.45.4.0849CrossRefGoogle Scholar
  25. Kiene R P, Linn L J, Bruton J A. 2000. New and important roles for DMSP in marine microbial communities. Journal of Sea Research, 43(3-4): 209–224, doi: 10.1016/S1385-1101(00)00023-XCrossRefGoogle Scholar
  26. Kiene R P, Linn L J, J, et al. 1999. Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Applied and Environmental Microbiology, 65(10): 4549–4558Google Scholar
  27. Kirst G O, Thiel C, Wolff H, et al. 1990. Dimethylsulfoniopropionate (DMSP) in icealgae and its possible biological role. Marine Chemistry, 35(1-4): 381–388, doi: 10.1016/S0304-4203 (09)90030-5CrossRefGoogle Scholar
  28. Lang A S, Beatty J T. 2007. Importance of widespread gene transfer agent genes in a-proteobacteria. Trends in Microbiology, 15(2): 54–62, doi: 10.1016/j.tim.2006.12.001CrossRefGoogle Scholar
  29. Lang A S, Zhaxybayeva O, Beatty J T. 2012. Gene transfer agents: phage-like elements of genetic exchange. Nature Reviews Microbiology, 10(7): 472–482, doi: 10.1038/nrmicro2802CrossRefGoogle Scholar
  30. Marrs B. 1974. Genetic recombination in Rhodopseudomonas capsulata. Proceedings of the National Academy of Sciences of the United States of America, 71(3): 971–973, doi: 10.1073/pnas. 71.3.971CrossRefGoogle Scholar
  31. McDaniel L D, Young E, Delaney J, et al. 2010. High frequency of horizontal gene transfer in the oceans. Science, 330(6000): 50, doi: 10.1126/science.ll92243CrossRefGoogle Scholar
  32. Moran M A, Reisch C R, Kiene R P, et al. 2012. Genomic insights into bacterial DMSP transformations. Annual Review of Marine Science, 4: 523–542, doi: 10.1146/annurev-marine-120710-100827CrossRefGoogle Scholar
  33. Pawlowski J, Fahrni J, Lecroq B, et al. 2007. Bipolar gene flow in deep-sea benthic foraminifera. Molecular Ecology, 16(19): 4089–4096, doi: 10.1111/J.1365-294X.2007.03465.XCrossRefGoogle Scholar
  34. Pommier T, Pinhassi J, Hagstrom A. 2005. Biogeographic analysis of ribosomal RNA clusters from marine bacterioplankton. Aquatic Microbial Ecology, 41(1): 79–89, doi: 10.3354/ame041079CrossRefGoogle Scholar
  35. Reisch C R, Moran M A, Whitman W B. 2008. Dimethylsulfoniopropi-onate-dependent demethylase (DmdA) from Pelagibacter ubi-que and Silicibacter pomeroyi. Journal of Bacteriology, 190(24): 8018–8024, doi: 10.1128/JB.00770-08CrossRefGoogle Scholar
  36. Reisch C R, Stoudemayer M J, Varaljay V A, et al. 2011. Novel pathway for assimilation of dimethylsulphoniopropionate widespread in marine bacteria. Nature, 473(7346): 208–211, doi: 10.1038/naturel0078CrossRefGoogle Scholar
  37. Ripp S, Miller R V. 1995. Effects of suspended particulates on the frequency of transduction among Pseudomonas aeruginosa in a freshwater environment. Applied and Environmental Microbiology, 61(4): 1214–1219Google Scholar
  38. Salgado P, Kiene R, Wiebe W, et al. 2014. Salinity as a regulator of DMSP degradation in Ruegeria pomeroyi DSS-3. Journal of Microbiology, 52(11): 948–954, doi: 10.1007/sl2275-014-4409-1CrossRefGoogle Scholar
  39. Sambrook J, Russell D W. 2001. Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory PressGoogle Scholar
  40. Schwartz S E, Andreae M O. 1996. Uncertainty in climate change caused by aerosols. Science, 272(5265). 1121. doi: 10.1126/sci-ence.272.5265.1121Google Scholar
  41. Shaw G E. 1983. Bio-controlled thermostasis involving the sulfur cycle. Climatic Change, 5(3): 297–303, doi: 10.1007/BF02423524CrossRefGoogle Scholar
  42. Solioz M, Marrs B. 1977. The gene transfer agent of Rhodopseudomonas capsulata: purification and characterization of its nucleic acid. Archives of Biochemistry and Biophysics, 181(1): 300–307, doi: 10.1016/0003-9861(77)90508-2CrossRefGoogle Scholar
  43. Sun Jing, Todd J D, Thrash J C, et al. 2016. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol. Nature Microbiology, 1(8). 16065. doi: 10.1038/nmicrobiol.2016.65CrossRefGoogle Scholar
  44. Sunda W, Kieber D J, Kiene R P, et al. 2002. An antioxidant function for DMSP and DMS in marine algae. Nature, 418(6895): 317–320, doi: 10.1038/nature00851CrossRefGoogle Scholar
  45. Tamura K, Peterson D, Peterson N, et al. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10): 2731–2739, doi: 10.1093/mol-bev/msrl21CrossRefGoogle Scholar
  46. Thompson J D, Higgins D G, Gibson T J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22): 4673–4680, doi: 10.1093/nar/22.22.4673CrossRefGoogle Scholar
  47. Turner S M, Nightingale P D, Broadgate W, et al. 1995. The distribution of dimethyl sulphide and dimethylsulphoniopropionate in Antarctic waters and sea ice. Deep Sea Research Part II: Topical Studies in Oceanography, 42(4-5): 1059–1080, doi: 10.1016/ 0967-0645(95)00066-yCrossRefGoogle Scholar
  48. Vettori C, Stotzky G, Yoder M, et al. 1999. Interaction between bacteriophage PBS1 and clay minerals and transduction of Bacillus subtilis by clay-phage complexes. Environmental Microbiology, 1(4): 347–355, doi: 10.1046/J.1462-2920.1999.00044.XCrossRefGoogle Scholar
  49. Visscher P T, Diaz M R, Taylor B F. 1992. Enumeration of bacteria which cleave or demethylate dimethylsulfoniopropionate in the Caribbean Sea. Marine Ecology Progress Series, 89: 293–296, doi: 10.3354/meps089293CrossRefGoogle Scholar
  50. Weinbauer M G. 2004. Ecology of prokaryotic viruses. FEMS Microbiology Reviews, 28(2): 127–181, doi: 10.1016/j.femsre.2003. 08.001CrossRefGoogle Scholar
  51. Wolfe G V, Steinke M, Kirst G O.1997. Grazing-activated chemical defence in a unicellular marine alga. Nature, 387(6636): 894–897, doi: 10.1038/43168CrossRefGoogle Scholar
  52. Yen H C, Hu N T, Marrs B L. 1979. Characterization of the gene transfer agent made by an overproducer mutant of Rhodopseudomo-nas capsulata. Journal of Molecular Biology, 131(2): 157–168, doi: 10.1016/0022-2836(79)90071-8CrossRefGoogle Scholar
  53. Yu Yong, Yan Shulin, Li Huirong, et al. 2011. Roseicitreum antarctic-um gen. nov., sp. nov., an aerobic bacteriochlorophyll a-con-taining alphaproteobacterium isolated from Antarctic sandy in-tertidal sediment. International Journal of Systematic and Evolutionary Microbiology, 61(9): 2173–2179, doi: 10.1099/ijs.0.024885-0CrossRefGoogle Scholar
  54. Zeng Yinxin, Liu Wenqi, Li Huirong, et al. 2007. Effect of restriction endonucleases on assessment of biodiversity of cultivable polar marine planktonic bacteria by amplified ribosomal DNA restriction analysis. Extremophiles, 11(5): 685–692, doi: 10.1007/S00792-007-0086-XCrossRefGoogle Scholar
  55. Zeng Yinxin, Qiao Zongyun, Yu Yong, et al. 2016. Diversity of bacterial dimethylsulfoniopropionate degradation genes in surface seawater of Arctic Kongsfjorden. Scientific Reports, 6. 33031. doi: 10.1038/srep33031CrossRefGoogle Scholar
  56. Zhao Yanlin, Wang Kui, Budinoff C, et al. 2008. Gene transfer agent (GTA) genes reveal diverse and dynamic Roseobacter and Rhodobacter populations in the Chesapeake bay. The ISME Journal, 3(3): 364–373, doi: 10.1038/ismej.2008.115CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Polar Science of State Oceanic AdministrationPolar Research Institute of ChinaShanghaiChina

Personalised recommendations