Acta Oceanologica Sinica

, Volume 38, Issue 8, pp 78–85 | Cite as

Fast acclimation of phytoplankton assemblies to acute salinity stress in the Jiulong River Estuary



Mixing of freshwater and seawater creates the well-known salinity gradients along the estuaries. In order to investigate how phytoplankton respond to the acute salinity changes, we exposed natural phytoplankton assemblies from the Jiulong River Estuary to differential saline field water while continuously monitoring their photosynthetic performances under both indoor- and outdoor-growth conditions. When the natural cell assemblies from salinity 30 field water were exposed to series low saline field water (salinity 25, 17, 13 and 7.5), the effective Photosystem II quantum yield (ΔF/Fm) decreased sharply, e.g., to one-fifth of its initials after 5 min exposure to salinity 7.5 field water, and then increased fast during the following 40 min and almost completely recovered after 320 min. During such an exposure process, non-photochemical quenching (NPQ) sharply increased from 0 to 0.85 within 5 min, and then decreased to nearly 0 within the following 70 min. When these cells re-acclimated to salinity 7.5 field water were exposed to series high saline field water (salinity 13, 17, 25 and 30), a similar response pattern was observed, with the decreased ΔF/Fm accompanied with increased NPQ, and followed by the recovery-induced increase in ΔF/Fm and decrease in NPQ. A similar response pattern as ΔF/Fm to the acute osmotic stress was also observed in the photosynthetic carbon fixation capacity according to radiocarbon (14C) incorporation. Our results indicate that estuarine phytoplankton assemblies could rapidly recover from the acute osmotic stress, implying a potential cause for their frequent blooms in coastal-estuarine waters where despite drastically varying salinity, available nutrients are abundant due to the land-derived runoffs or mixing-caused relaxations from sediments.

Key words

PSII quantum yield carbon fixation salinity gradients phytoplankton assemblies Jiulong River Estuary 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are grateful to the experimental helps of Ying Zheng, Wei Li and Guiyuan Yang and nutrient analysis of Yongming Huang.


  1. Allakhverdiev S I, Nishiyama Y, Miyairi S, et al. 2002. Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiology, 130(3): 1443–1453, doi: 10.1104/pp.011114CrossRefGoogle Scholar
  2. Armstrong F A J, Stearns C R, Strickland J D H. 1967. The measurement of upwelling and subsequent biological process by means of the Technicon Autoanalyzer? and associated equipment. Deep Sea Research and Oceanographic Abstracts, 14(3): 381–389, doi: 10.1016/0011-7471(67)90082-4CrossRefGoogle Scholar
  3. Brand L E. 1984. The salinity tolerance of forty-six marine phytoplankton isolates. Estuarine, Coastal and Shelf Science, 18(5): 543–556, doi: 10.1016/0272-7714(84)90089-1CrossRefGoogle Scholar
  4. Cai Aizhi, Cai Yuee, Zhu Xiaoning, et al. 1991. Diffusion and modern sedimentation of seaward-transporting discharges in the estuary of Jiulongjiang River, Fujian Province. Marine Geology & Quaternary Geology (in Chinese), 11(1): 57–67.Google Scholar
  5. Cao Zhenrui, Huang Bangqin, Liu Yuan, et al. 2005. Distribution characteristics of size-fractionated chlorophyll a in Xiamen waters. Journal of Oceanography in Taiwan Strait (in Chinese), 24(4): 493–501.Google Scholar
  6. Cao Wenzhi, Huang Zheng, Zhai Weidong, et al. 2015. Isotopic evidence on multiple sources of nitrogen in the northern Jiulong River, Southeast China. Estuarine, Coastal and Shelf Science, 163: 37–43. doi: 10.1016/j.ecss.2015.05.042CrossRefGoogle Scholar
  7. Chen Baohong, Chen Changping, Chen Jinmin, et al. 2012. Variations of nutrient content and ratios and their impact on phytoplankton community in Xiamen waters. Journal of Oceanography in Taiwan Strait (in Chinese), 31(2): 246–253.Google Scholar
  8. Chen Baohong, Ji Weidong, Chen Jinmin, et al. 2013a. Characteristics of nutrients in the Jiulong River and its impact on Xiamen Water, China. Chinese Journal of Oceanology and Limnology, 31(5): 1055–1063. doi: 10.1007/s00343-013-2263-3CrossRefGoogle Scholar
  9. Chen Nengwang, Peng Benrong, Hong Huasheng, et al. 2013b. Nutrient enrichment and N:P ratio decline in a coastal bay-river system in southeast China: The need for a dual nutrient (N and P) management strategy. Ocean & Coastal Management, 81: 7–13.CrossRefGoogle Scholar
  10. Cloern J E. 1999. The relative importance of light and nutrient limitation of phytoplankton growth: a simple index of coastal ecosystem sensitivity to nutrient enrichment. Aquatic Ecology, 33(1): 3–15. doi: 10.1023/A:1009952125558CrossRefGoogle Scholar
  11. Domingues R B, Anselmo T P, Barbosa A B, et al. 2010. Tidal variability of phytoplankton and environmental drivers in the freshwater reaches of the Guadiana Estuary (SW Iberia). nternational Review of Hydrobiology, 95(4-5): 352–369. doi: 10.1002/iroh.v95:4/5CrossRefGoogle Scholar
  12. D'ors A, Bartolomé M C, Sánchez-Fortún S. 2016. Repercussions of salinity changes and osmotic stress in marine phytoplankton species. Estuarine, Coastal and Shelf Science, 175: 169–175. doi: 10.1016/j.ecss.2016.04.004CrossRefGoogle Scholar
  13. Doucette G J, King K L, Thessen A E, et al. 2008. The effect of salinity on domoic acid production by the diatom Pseudo-Nitzschia multiseries. Nova Hedwigia Beiheft, 133: 31–46.Google Scholar
  14. Finkel Z V, Beardall J, Flynn K J, et al. 2010. Phytoplankton in a changing world: cell size and elemental stoichiometry. Journal of Plankton Research, 32(1): 119–137. doi: 10.1093/plankt/fbp098CrossRefGoogle Scholar
  15. Gao Guang, Xia Jianrong, Yu Jinlan, et al. 2018. Physiological response of a red tide alga (Skeletonema costatum) to nitrate enrichment, with special reference to inorganic carbon acquisition. Marine Environmental Research, 133: 15–23. doi: 10.1016/ j.marenvres.2017.11.003CrossRefGoogle Scholar
  16. Genty B, Briantais J M, Baker N R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA)-General Subjects, 990(1): 87–92. doi: 10.1016/ S0304-4165(89)80016-9CrossRefGoogle Scholar
  17. Giacobbe M G, Oliva F D, Maimone G. 1996. Environmental factors and seasonal occurrence of the dinoflagellate Alexandrium minutum, a PSP potential producer, in a Mediterranean lagoon. Estuarine, Coastal and Shelf Science, 42(5): 539–549. doi: 10.1006/ecss.1996.0035CrossRefGoogle Scholar
  18. Häubner N, Sylvander P, Vuori K, et al. 2014. Abiotic stress modifies the synthesis of alpha-tocopherol and beta-carotene in phytoplankton species. Journal of Phycology, 50(4): 753–759. doi: 10.1111/jpy.2014.50.issue-4CrossRefGoogle Scholar
  19. Hernando M, Schloss I R, Malanga G, et al. 2015. Effects of salinity changes on coastal Antarctic phytoplankton physiology and assemblage composition. Journal of Experimental Marine Biology and Ecology, 466: 110–119. doi: 10.1016/j.jembe.2015.02. 012CrossRefGoogle Scholar
  20. Holm-Hansen O, Helbling E W. 1995. Técnicas para la medición de la productividad primaria en el fitoplancton. In: Alveal K, Ferrario M E, Oliveira E C, et al, eds. Manual de Métodos Ficológicos. Concepción: Universidad de Concepción, 329–350Google Scholar
  21. Huang Xuguang, Guo Donghui, Xiao Wupeng, et al. 2012. The relationship between quantitative changes of microplankton and population dynamics of small medusa in the Jiulong River estuary in spring of 2011. Oceanologia et Limnologia Sinica (in Chinese), 43(3): 579–583.Google Scholar
  22. Huang Liangmin, Jian Weijun, Song Xingyu, et al. 2004. Species diversity and distribution for phytoplankton of the Pearl River estuary during rainy and dry seasons. Marine Pollution Bulletin, 49(7-8): 588–596. doi: 10.1016/j.marpolbul.2004.03.015CrossRefGoogle Scholar
  23. Li Ying, Cao Wenzhi, Su Caixia, et al. 2011a. Nutrient sources and composition of recent algal blooms and eutrophication in the northern Jiulong River, Southeast China. Marine Pollution Bulletin, 63(5-12): 249–254. doi: 10.1016/j.marpolbul.2011.02.021CrossRefGoogle Scholar
  24. Li Gang, Gao Kunshan, Yuan Dongxing, et al. 2011b. Relationship of photosynthetic carbon fixation with environmental changes in the Jiulong River estuary of the South China Sea, with special reference to the effects of solar UV radiation. Marine Pollution Bulletin, 62(8): 1852–1858. doi: 10.1016/j.marpolbul.2011. 02.050CrossRefGoogle Scholar
  25. Li Gang, Lin Qiang, Lin Junda, et al. 2014. Environmental gradients regulate the spatial variations of phytoplankton biomass and community structure in surface water of the Pearl River estuary. Acta Ecologica Sinica, 34(2): 129–133. doi: 10.1016/j.chnaes. 2014.01.002CrossRefGoogle Scholar
  26. Licursi M, Sierra M V, Gómez N. 2006. Diatom assemblages from a turbid coastal plain estuary: Río de la Plata (South America). Journal of Marine Systems, 62(1-2): 35–45. doi: 10.1016/j.jmarsys. 2006.03.002CrossRefGoogle Scholar
  27. Lim P T, Ogata T. 2005. Salinity effect on growth and toxin production of four tropical Alexandrium species (Dinophyceae). Toxicon, 45(6): 699–710. doi: 10.1016/j.toxicon.2005.01.007CrossRefGoogle Scholar
  28. Liu Guangping, Hu Jianyu, Chen Zhaozhang, et al. 2008. Distribution characteristics of sea surface salinity and its relations to tide in Jiulongjiang estuary-Xiamen Bay. Journal of Xiamen University (Natural Science) (in Chinese), 47(5): 710–713.Google Scholar
  29. Liu Lemian, Yang Jun, Yu Xiaoqing, et al. 2013. Patterns in the composition of microbial communities from a subtropical river: effects of environmental, spatial and temporal factors. PLoS One, 8(11): e81232, doi: 10.1371/journal.pone.0081232Google Scholar
  30. Lu Chongming, Zhang Jianhua. 1999. Effects of salt stress on PSII function and photoinhibition in the cyanobacterium Spirulina platensis. Journal of Plant Physiology, 155(6): 740–745. doi: 10.1016/S0176-1617(99)80091-1CrossRefGoogle Scholar
  31. Mo Yu, Lin Lizhen, Zheng Liping, et al. 2013. Phytoplankton phosphorus stress of Jiulongjiang River-Estuary and adjacent waters system in summer. Oceanologia et Limnologia Sinica (in Chinese), 44(1): 241–248.Google Scholar
  32. Murphy J, Riley J P. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27: 31–36. doi: 10.1016/S0003-2670(00)88444-5CrossRefGoogle Scholar
  33. Muylaert K, Sabbe K, Vyverman W. 2009. Changes in phytoplankton diversity and community composition along the salinity gradient of the Schelde estuary (Belgium/The Netherlands). Estuarine, Coastal and Shelf Science, 82(2): 335–340. doi: 10.1016/j.ecss. 2009.01.024CrossRefGoogle Scholar
  34. Nche-Fambo F A, Scharler U M, Tirok K. 2015. Resilience of estuarine phytoplankton and their temporal variability along salinity gradients during drought and hypersalinity. Estuarine, Coastal and Shelf Science, 158: 40–52. doi: 10.1016/j.ecss.2015.03.011CrossRefGoogle Scholar
  35. Pai Sucheng, Tsau Y J, Yang T I. 2001. pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method. Analytica Chimica Acta, 434(2): 209–216. doi: 10.1016/S0003- 2670(01)00851-0CrossRefGoogle Scholar
  36. Porra R J. 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research, 73(1-3): 149–156.CrossRefGoogle Scholar
  37. Radchenko I G, Il’iash L V. 2006. Growth and photosynthetic activity of diatom Thalassiosira weissflogii at decreasing salinity. zvestiia Akademii Nauk. Seriia Biologicheskaia, (3): 306–313.Google Scholar
  38. Raven J A. 1998. The twelfth tansley lecture, small is beautiful: the picophytoplankton. Functional Ecology, 12(4): 503–513. doi: 10.1046/j.1365-2435.1998.00233.xCrossRefGoogle Scholar
  39. Rijstenbil J W, Mur L R, Wijnholds J J, et al. 1989a. Impact of a temporal salinity decrease on growth and nitrogen metabolism of the marine diatom Skeletonema costatum in continuous cultures. Marine Biology, 101(1): 121–129. doi: 10.1007/BF 00393485CrossRefGoogle Scholar
  40. Rijstenbil J W, Wijnholds J A, Sinke J J. 1989b. Implications of salinity fluctuation for growth and nitrogen metabolism of the marine diatom Ditylum brightwellii in comparison with Skeletonema costatum. Marine Biology, 101(1): 131–141. doi: 10.1007/ BF00393486CrossRefGoogle Scholar
  41. Tang Rongkun, He Qing, Ji Weidong, et al. 2010. Characteristics of temporal and spatial variations in chlorophyll contents of waters around Xiamen Island in 2005–2007. Journal of Oceanography in Taiwan Strait (in Chinese), 29(3): 342–351.Google Scholar
  42. Thessen A E, Dortch Q, Parsons M L, et al. 2005. Effect of salinity on Pseudo-Nitzschia species (Bacillariophyceae) growth and distribution. Journal of Phycology, 41(1): 21–49. doi: 10.1111/jpy.2005.41.issue-1CrossRefGoogle Scholar
  43. Tian Yongqiang, Huang Bangqin, Yu Chaochao, et al. 2014. Dynamics of phytoplankton communities in the Jiangdong Reservoir of Jiulong River, Fujian, South China. Chinese Journal of Oceanology and Limnology, 32(2): 255–265. doi: 10.1007/ s00343-014-3158-7CrossRefGoogle Scholar
  44. Van Kooten O, Snel J F H. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research, 25(3): 147–150. doi: 10.1007/BF00033156CrossRefGoogle Scholar
  45. Villafañe V, Reid F. 1995. Métodos de microscopía para la cuantificación del fitoplancton. In: Alveal K, Ferrario M E, Oliveira E C, et al., eds. Manual de Métodos Ficológicos. Concepción: Universidad de Concepción, 169–185Google Scholar
  46. Wang Jia, Hong Huasheng, Zhou Lumin, et al. 2013. Numerical modeling of hydrodynamic changes due to coastal reclamation projects in Xiamen Bay, China. Chinese Journal of Oceanology and Limnology, 31(2): 334–344. doi: 10.1007/s00343-013-2109-zCrossRefGoogle Scholar
  47. Wang Weiqiang, Huang Shanggao, Gu Deyu, et al. 1986. Mixing characters of fresh water with sea water in the Jiulong Jiang estuary, Fujian. Journal of Oceanography in Taiwan Strait (in Chinese), 5(1): 10–17.Google Scholar
  48. Wang Yongming, Liu Lemian, Chen Huihuang, et al. 2015b. Spatiotemporal dynamics and determinants of planktonic bacterial and microeukaryotic communities in a Chinese subtropical river. Applied Microbiology and Biotechnology, 99(21): 9255–9266. doi: 10.1007/s00253-015-6773-0CrossRefGoogle Scholar
  49. Wang Guizhi, Wang Zhangyong, Zhai Weidong, et al. 2015a. Net subterranean estuarine export fluxes of dissolved inorganic C, N, P, Si, and total alkalinity into the Jiulong River estuary, China. Geochimica et Cosmochimica Acta, 149: 103–114. doi: 10.1016/j.gca.2014.11.001CrossRefGoogle Scholar
  50. Wood E D, Armstrong F A J, Richards F A. 1967. Determination of nitrate in sea water by cadmium-copper reduction to nitrite. Journal of the Marine Biological Association of the United Kingdom, 47(1): 23–31. doi: 10.1017/S002531540003352XCrossRefGoogle Scholar
  51. Wu Gaojie, Cao Wenzhi, Huang Zheng, et al. 2017. Decadal changes in nutrient fluxes and environmental effects in the Jiulong River Estuary. Marine Pollution Bulletin, 124(2): 871–877. doi: 10.1016/j.marpolbul.2017.01.071CrossRefGoogle Scholar
  52. Yan Xiuli, Zhai Weidong, Hong Huasheng, et al. 2012. Distribution, fluxes and decadal changes of nutrients in the Jiulong River Estuary, Southwest Taiwan Strait. Chinese Science Bulletin, 57(18): 2307–2318. doi: 10.1007/s11434-012-5084-4CrossRefGoogle Scholar
  53. Yi Rong, Tan Yehui, Wang Shengfu, et al. 2014. Cell size dependent responses of phytoplankton assemblages to nitrate and phosphate additions in surface waters of the northern South China Sea. Open Journal of Marine Science, 4(2): 44564Google Scholar
  54. Yin Kedong, Qian Peiyuan, Wu M C S, et al. 2001. Shift from P to N limitation of phytoplankton growth across the Pearl River estuarine plume during summer. Marine Ecology Progress Series, 221: 17–28. doi: 10.3354/meps221017CrossRefGoogle Scholar
  55. Zhang Shuting, Lv Lu, Zhang Yongli, et al. 2013. Occurrence and variations of five classes of antibiotic resistance genes along the Jiulong River in southeast China. Journal of Environmental Biology, 34: 345–351.Google Scholar

Copyright information

© Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina

Personalised recommendations