Advertisement

Acta Oceanologica Sinica

, Volume 37, Issue 10, pp 4–10 | Cite as

Morphology, ultrastructure and phylogeny of Cyanothece sp. (Cyanobacteriaceae: Cyanophyceae) isolated from the eastern Indian Ocean

  • Xiaodong Zhang
  • Shuang Yang
  • Jun SunEmail author
  • Chao Wu
  • Jing Wang
  • Guicheng Zhang
  • Changling Ding
Article
  • 20 Downloads

Abstract

One strain of unicellular greenish algae embedded by mucilage was successfully isolated from equatorial area in the Indian Ocean. Microscopic observation, ultrastructure features and genetic identification confirmed that the strain was closely related to Cyanothece sp., which was a cyanobacteria species with great ecological significance. Cells were solitary with oval or bacilliform shapes. Diameters of this strain were relatively small, ranging from 2.5 to 6.5 μm on average. Ultrastructure of cells was simple. Thylakoids were arranged parietal and keritomized content were observed in the thylakoid region. Various electron-transparent granules with low electron-dense region as well as cyanophycin or glycogen granules-like organelle and carbonxysomes were also observed. For pigment composition, the dominant pigments were chlorophyll a, β-Carotene, Zeaxanthin and an unknown pigment, contributing 23.8%, 26.1%, 14.7% and 15.7% to total pigments respectively. The phylogenetic analysis of 16S rRNA gene and nifH gene confirmed that Strain EIO409 was closely related with Cyanothece sp..

Key words

Cyanothece cyanobacteria morphology 16S rRNA gene nifH gene Indian Ocean 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandyopadhyay A, Elvitigala T, Welsh E, et al. 2011. Novel metabolic attributes of the genus Cyanothece, comprising a group of unicellular nitrogen-fixing cyanobacteria. mBio, 2(5): e00214–11CrossRefGoogle Scholar
  2. Castenholz R W, Wilmotte A, Herdman M, et al. 2001. Phylum BX. Cyanobacteria. In: Boone D R, Castenholz R W, Garrity G M, eds. Bergey’s Manual® of Systematic Bacteriology. New York: Springer, 473–599CrossRefGoogle Scholar
  3. Cepák V. 1993. Morphology of DNA containing structures (nucleoids) as a prospective character in cyanophyte taxonomy. Journal of Phycology, 29(6): 844–852, doi: 10.1111/j.0022-3646.1993.00844.xCrossRefGoogle Scholar
  4. Cohen Y, Padan E, Shilo M. 1975. Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Journal of Bacteriology, 123(3): 855–861Google Scholar
  5. Dor I. 1998. A checklist of cyanophyta (cyanobacteria) of Israel and adjacent regions. Israel Journal of Plant Sciences, 46(3): 239–254, doi: 10.1080/07929978.1998.10676733CrossRefGoogle Scholar
  6. Fine R A, Smethie W M Jr, Bullister J H, et al. 2008. Decadal ventilation and mixing of Indian Ocean waters. Deep Sea Research Part I: Oceanographic Research Papers, 55(1): 20–37, doi: 10.1016/j.dsr.2007.10.002CrossRefGoogle Scholar
  7. Galloway J N, Dentener F J, Capone D G, et al. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry, 70(2): 153–226, doi: 10.1007/s10533-004-0370-0CrossRefGoogle Scholar
  8. Garcia-Pichel F, Nübel U, Muyzer G. 1998. The phylogeny of unicellular, extremely halotolerant cyanobacteria. Archives of Microbiology, 169(6): 469–482, doi: 10.1007/s002030050599CrossRefGoogle Scholar
  9. Garrity G, Boon D R, Castenholz R W. 2001. Bergey’s Manual of Systematic Bacteriology: Volume 1. the Archaea and the Deeply Branching and Phototrophic Bacteria. 2nd ed. New York: SpringerGoogle Scholar
  10. Guillard R R L, Ryther J H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula conferraceae (Cleve) gran. Canadian Journal of Microbiology, 8(2): 229–239, doi: 10.1139/m62-029CrossRefGoogle Scholar
  11. Hayes P K, El Semary N A, Sánchez-Baracaldo P. 2007. The taxonomy of cyanobacteria: molecular insights into a difficult problem. In: Brodie J, Lewis J, eds. Unravelling the Algae: The Past, Present, and Future of Algal Systematics. Boca Raton, FL: CRC PressGoogle Scholar
  12. Komárek J. 1976. Taxonomic review of the genera Synechocystis Sauv. 1892, Synechococcus Nag. 1849, and Cyanothece gen. nov. (Cyanophyceae). Archiv für Protistenkunde, 118: 119–179Google Scholar
  13. Komárek J, Cepák V. 1998. Cytomorphological characters supporting the taxonomic validity of Cyanothece (Cyanoprokaryota). Plant Systematics and Evolution, 210(1–2): 25–39, doi: 10.1007/BF00984725CrossRefGoogle Scholar
  14. Komárek J, Cepák V, Kaštovský J, et al. 2004. What are the cyanobacterial genera Cyanothece and Cyanobacterium? Contribution to the combined molecular and phenotype taxonomic evaluation of cyanobacterial diversity. Algological Studies, 113(1): 1–36, doi: 10.1127/1864-1318/2004/0113-0001CrossRefGoogle Scholar
  15. Komárek J, Kopecký J, Cepák V. 1999. Generic characters of the simplest cyanoprokaryotes Cyanobium, Cyanobacterium and Synechococcus. Cryptogamie Algologie, 20(3): 209–222, doi: 10.1016/S0181-1568(99)80015-4CrossRefGoogle Scholar
  16. Kumar S P, Narvekar J, Nuncio M, et al. 2009. What drives the biological productivity of the Northern Indian Ocean?. In: Wiggert J D, Hood R R, Naqvi S W A, et al., eds. Indian Ocean Biogeochemical Processes and Ecological Variability. Washington, DC: American Geophysical Union, 33–56CrossRefGoogle Scholar
  17. Lee R E. 2008. Phycology. 4th ed. Cambridge: Cambridge University Press, 547CrossRefGoogle Scholar
  18. Margheri M C, Ventura S, Kaštovský J, et al. 2008. The taxonomic validation of the cyanobacterial genus Halothece. Phycologia, 47(5): 477–486, doi: 10.2216/07-87.1CrossRefGoogle Scholar
  19. Mikhodyuk O S, Gerasimenko L M, Akimov V N, et al. 2008. Ecophysiology and polymorphism of the unicellular extremely natronophilic cyanobacterium Euhalothece sp. Z-M001 from Lake Magadi. Microbiology, 77(6): 717–725, doi: 10.1134/S0026261708060106CrossRefGoogle Scholar
  20. Mogany T, Swalaha F M, Allam M, et al. 2018. Phenotypic and genotypic characterisation of an unique indigenous hypersaline unicellular cyanobacterium, Euhalothece sp. nov.. Microbiological Research, 211: 47–56, doi: 10.1016/j.micres.2018.04.001CrossRefGoogle Scholar
  21. Nübel U, Garcia-Pichel F, Muyzer G. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and Environmental Microbiology, 63(8): 3327–3332Google Scholar
  22. Oren A. 2009. Problems associated with the taxonomic validation of the cyanobacterial genus Halothece by Margheri et al. 2008, Phycologia 47: 477–486. Phycologia, 48(4): 313–314, doi: 10.2216/09-33.1CrossRefGoogle Scholar
  23. Park J W, Nam S W, Kim H S, et al. 2014. Enhanced photobiological H2 production by the addition of carbon monoxide and hydrogen cyanide in two unicellular N2-fixing cyanobacterial strains isolated from Korean coasts. Ocean Science Journal, 49(1): 11–18, doi: 10.1007/s12601-014-0002-0CrossRefGoogle Scholar
  24. Reddy K J, Haskell J B, Sherman D M, et al. 1993. Unicellular, aerobic nitrogen-fixing cyanobacteria of the genus Cyanothece. Journal of Bacteriology, 175(5): 1284–1292, doi: 10.1128/jb.175.5.1284-1292.1993CrossRefGoogle Scholar
  25. Reddy K J, Soper B W, Tang J, et al. 1996. Phenotypic variation in exopolysaccharide production in the marine, aerobic nitrogen-fixing unicellular cyanobacterium Cyanothece sp.. World Journal of Microbiology and Biotechnology, 12(4): 311–318, doi: 10.1007/BF00340206CrossRefGoogle Scholar
  26. Rippka R, Cohen-Bazire G. 1983. The cyanobacteriales: a legitimate order based on the type strain Cyanobacterium stanieri?. Annales de l’Institut Pasteur/Microbiologie, 134(1): 21–36CrossRefGoogle Scholar
  27. Rixen T, Ramaswamy V, Gaye B, et al. 2009. Monsoonal and ENSO impacts on particle fluxes and the biological pump in the Indian ocean. In: Wiggert J D, Hood R R, Naqvi S W A, et al., eds. Indian Ocean Biogeochemical Processes and Ecological Variability. Washington, DC: American Geophysical Union, 365–383CrossRefGoogle Scholar
  28. Roussomoustakaki M, Anagnostidis K. 1991. Cyanothece halobia, a new planktic chroococcalean cyanophyte from Hellenic heliothermal saltworks. Algological Studies/Archiv für Hydrobiologie, (64): 71–95Google Scholar
  29. Rudi K, Skulberg O M, Larsen F, et al. 1997. Strain characterization and classification of oxyphotobacteria in clone cultures on the basis of 16S rRNA sequences from the variable regions V6, V7, and V8. Applied and Environmental Microbiology, 63(7): 2593–2599Google Scholar
  30. Spurr A R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research, 26(1–2): 31–43, doi: 10.1016/S0022-5320(69)90033-1CrossRefGoogle Scholar
  31. Tamura K, Peterson D, Peterson N, et al. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10): 2731–2739, doi: 10.1093/molbev/msr121CrossRefGoogle Scholar
  32. Wang Jing, Kan Junjun, Zhang Xiaodong, et al. 2017. Archaea dominate the ammonia-oxidizing community in deep-sea sediments of the eastern Indian ocean—from the equator to the bay of Bengal. Frontiers in Microbiology, 8: 415Google Scholar
  33. Waterbury J B, Watson S W, Valois F W. 1986. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Canadian Bulletin of Fisheries and Aquatic Sciences, 214: 71–120Google Scholar
  34. Welsh E A, Liberton M, Stöckel J, et al. 2008. The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle. Proceedings of the National Academy of Sciences of the United States of America, 105(39): 15094–15099, doi: 10.1073/pnas.0805418105CrossRefGoogle Scholar
  35. Zapata M, Rodríguez F, Garrido J L. 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Marine Ecology Progress Series, 195: 29–45, doi: 10.3354/meps195029CrossRefGoogle Scholar
  36. Zehr J P, Mellon M T, Zani S. 1998. New nitrogen-fixing microorganisms detected in oligotrophic oceans by amplification of nitrogenase (nifH) genes. Applied and Environmental Microbiology, 64(9): 3444–3450Google Scholar
  37. Zhang Yunyi, Chi Zhenming, Lu Weidong. 2007. Exopolysaccharide production by four cyanobacterial isolates and preliminary identification of these isolates. Journal of Ocean University of China, 6(2): 147–152, doi: 10.1007/s11802-007-0147-xCrossRefGoogle Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaodong Zhang
    • 1
    • 2
  • Shuang Yang
    • 1
    • 2
  • Jun Sun
    • 1
    • 2
    Email author
  • Chao Wu
    • 3
  • Jing Wang
    • 1
    • 2
  • Guicheng Zhang
    • 1
    • 2
  • Changling Ding
    • 1
    • 2
  1. 1.Tianjin Key Laboratory of Marine Resources and ChemistryTianjin University of Science and TechnologyTianjinChina
  2. 2.Research Centre for Indian Ocean EcosystemTianjin University of Science and TechnologyTianjinChina
  3. 3.Institute of Marine Science and TechnologyShandong UniversityJinanChina

Personalised recommendations