Advertisement

Acta Oceanologica Sinica

, Volume 37, Issue 12, pp 85–91 | Cite as

Ecosystem carbon stock of a tropical mangrove forest in North Sulawesi, Indonesia

  • Shunyang Chen
  • Bin Chen
  • Pramudji Sastrosuwondo
  • I Wayan Eka Dharmawan
  • Danyun Ou
  • Xijie Yin
  • Weiwei Yu
  • Guangcheng Chen
Article
  • 4 Downloads

Abstract

Recent studies have highlighted the valuable role played by mangrove forests in carbon sequestration and storage. Although Indonesia accounts for a large proportion of global mangrove area, knowledge on the carbon stock and sources in the Indonesian mangrove is still limited. In this study, we quantified the ecosystem organic carbon (OC) stock and its spatial variation at an oceanic mangrove in Wori, North Sulawesi, Indonesia. The sources of soil OC were also investigated. The results showed that the mangrove soil had a substantial OC stock containing 15.4 kg/m2 (calculated by carbon) in the top 50 cm soil, and represented the majority of the ecosystem OC stock at the Wori mangrove. The mangrove biomass and ecosystem OC stock were 8.3 kg/m2 and 23.7 kg/m2, respectively. There was no significantly difference in the soil OC stock among the stations with difference distances offshore, while the highest mangrove biomass OC stock was found at the seaward station. Isotope mixing calculations showed that the rich OC in mangrove soils was attributed to the accumulated autochthonous mangrove source while the suspended organic matter in tidal water and the mangrove-adjacent seagrass contributed less than 20% to the soil OC. The results further demonstrated the importances of the oceanic mangrove in carbon storage and the mangrove plants in contributing OC to their soils.

Key words

mangrove carbon stock biomass soil stable isotopes Indonesia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are grateful to Asep Rasyidin, Mochtar Djabar and Liang Cuicui for their assistance with field sampling and laboratory analysis.

References

  1. Adame M F, Kauffman J B, Medina I, et al. 2013. Carbon stocks of tropical coastal wetlands within the Karstic Landscape of the Mexican Caribbean. PloS One, 8(2): e56569, doi: 10.1371/journal. pone.0056569CrossRefGoogle Scholar
  2. Alongi D M. 1998. Coastal Ecosystem Processes. Boca Raton, Fla: CRC PressGoogle Scholar
  3. Alongi D M. 2002. Present state and future of the world’s mangrove forests. Environmental Conservation, 29(3): 331–349CrossRefGoogle Scholar
  4. Alongi D M. 2009. The Energetics of Mangrove Forests. Netherlands: SpringerGoogle Scholar
  5. Alongi D M. 2014. Carbon cycling and storage in mangrove forests. Review of Marine Science, 6(1): 195–219, doi: 10.1146/annurevmarine-010213-135020CrossRefGoogle Scholar
  6. Alongi D M, Ayukai T, Brunskill G J, et al. 1998. Sources, sinks, and export of organic carbon through a tropical, semi-enclosed delta (Hinchinbrook Channel, Australia). Mangroves and Salt Marshes, 2(4): 237–242, doi: 10.1023/A:1009927611025CrossRefGoogle Scholar
  7. Alongi D M, Mukhopadhyay S K. 2015. Contribution of mangroves to coastal carbon cycling in low latitude seas. Agricultural and Forest Meteorology, 213: 266–272, doi: 10.1016/j.agrformet. 2014.10.005CrossRefGoogle Scholar
  8. Alongi M D, Murdiyarso D, Fourqurean J W, et al. 2016. Indonesia’s blue carbon: a globally significant and vulnerable sink for seagrass and mangrove carbon. Wetlands Ecology and Management, 24(1): 3–13, doi: 10.1007/s11273-015-9446-yCrossRefGoogle Scholar
  9. Armentano T V, Menges E S. 1986. Patterns of change in the carbon balance of organic soil-wetlands of the temperate zone. Journal of Ecology, 74(3): 755–774, doi: 10.2307/2260396CrossRefGoogle Scholar
  10. Bouillon S, Borges A V, Castañeda-Moya E, et al. 2008. Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochemical Cycles, 22(2): GB2013Google Scholar
  11. Breithaupt J L, Smoak J M, Smith III T J, et al. 2012. Organic carbon burial rates in mangrove sediments: Strengthening the global budget. Global Biogeochemical Cycles, 26(3): GB3011Google Scholar
  12. Cerón-Bretón J G, Cerón-Bretón R M, Rangel-Marrón M, et al. 2011. Determination of carbon sequestration rate in soil of a mangrove forest in Campeche, Mexico. WSEAS Transactions on Environment and Development, 7(2): 55–64Google Scholar
  13. Chen Guangcheng, Azkab M H, Chmura G L, et al. 2017. Mangroves as a major source of soil carbon storage in adjacent seagrass meadows. Scientific Reports, 7: 42406, doi: 10.1038/srep42406CrossRefGoogle Scholar
  14. Chen Guangcheng, Tam N F Y, Ye Yong. 2012. Spatial and seasonal variations of atmospheric N2O and CO2 fluxes from a subtropical mangrove swamp and their relationships with soil characteristics. Soil Biology and Biochemistry, 48: 175–181, doi: 10.1016/j.soilbio.2012.01.029CrossRefGoogle Scholar
  15. Donato D C, Kauffman J B, Murdiyarso D, et al. 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4(5): 293–297, doi: 10.1038/ngeo1123CrossRefGoogle Scholar
  16. FAO. 2007. The World’S Mangrove 1980–2005. Rome: FAOGoogle Scholar
  17. Gleason S M, Ewel K C. 2002. Organic matter dynamics on the forest floor of a micronesian mangrove forest: an investigation of species composition shifts. Biotropica, 34(2): 190–198, doi: 10.1111/btp.2002.34.issue-2CrossRefGoogle Scholar
  18. Gonneea M E, Paytan A, Herrera-Silveira J A. 2004. Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years. Estuarine, Coastal and Shelf Science, 61(2): 211–227, doi: 10.1016/j.ecss.2004.04.015CrossRefGoogle Scholar
  19. Hiraishi T, Krug T, Tanab, K, et al. 2014. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. Switzerland: IPCCGoogle Scholar
  20. Jennerjahn T C, Ittekkot V. 2002. Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften, 89(1): 23–30, doi: 10.1007/s00114-001-0283-xCrossRefGoogle Scholar
  21. Jones T, Ratsimba H, Ravaoarinorotsihoarana L, et al. 2014. Ecological variability and carbon stock estimates of mangrove ecosystems in northwestern Madagascar. Forests, 5: 177–205, doi: 10.3390/f5010177CrossRefGoogle Scholar
  22. Kauffman J B, Heider C, Cole T G, et al. 2011. Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands, 31: 343–352, doi: 10.1007/s13157-011-0148-9CrossRefGoogle Scholar
  23. Kauffman J B, Heider C, Norfolk J, et al. 2014. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecological Applications, 24: 518–527, doi: 10.1890/13-0640.1CrossRefGoogle Scholar
  24. Keith H, Mackey B G, Lindenmayer D B. 2009. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proceedings of the National Academy of Sciences of the United States of America, 106(28): 11635–11640, doi: 10.1073/pnas.0901970106CrossRefGoogle Scholar
  25. Komiyama A, Ong J E, Poungparn S. 2008. Allometry, biomass, and productivity of mangrove forests: a review. Aquatic Botany, 89(2): 128–137, doi: 10.1016/j.aquabot.2007.12.006CrossRefGoogle Scholar
  26. Komiyama A, Poungparn S, Kato S. 2005. Common allometric equations for estimating the tree weight of mangroves. Journal of Tropical Ecology, 21(4): 471–477, doi: 10.1017/S0266467405002476CrossRefGoogle Scholar
  27. Kristensen E, Bouillon S, Dittmar T, et al. 2008. Organic carbon dynamics in mangrove ecosystems: a review. Aquatic Botany, 89(2): 201–219, doi: 10.1016/j.aquabot.2007.12.005CrossRefGoogle Scholar
  28. Murdiyarso D, Purbopuspito J, Kauffman J B, et al. 2015. The potential of Indonesian mangrove forests for global climate change mitigation. Nature Climate Change, 5(12): 1089–1092, doi: 10.1038/nclimate2734CrossRefGoogle Scholar
  29. Muzuka A N N, Shunula J P. 2006. Stable isotope compositions of organic carbon and nitrogen of two mangrove stands along the Tanzanian coastal zone. Estuarine, Coastal and Shelf Science, 66(3–4): 447–458CrossRefGoogle Scholar
  30. Ong J E, Gong W K, Wong C H. 2004. Allometry and partitioning of the mangrove, Rhizophora apiculata. Forest Ecology and Management, 188(1–3): 395–408CrossRefGoogle Scholar
  31. Phillips D L, Gregg J W. 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia, 136(2): 261–269, doi: 10.1007/s00442-003-1218-3CrossRefGoogle Scholar
  32. Rahman M M, Khan M N I, Hoque A K F, et al. 2015. Carbon stock in the Sundarbans mangrove forest: spatial variations in vegetation types and salinity zones. Wetlands Ecology Management, 23: 269–283, doi: 10.1007/s11273-014-9379-xCrossRefGoogle Scholar
  33. Ranjan R K, Routh J, Ramanathan A L, et al. 2011. Elemental and stable isotope records of organic matter input and its fate in the Pichavaram mangrove-estuarine sediments (Tamil Nadu, India). Marine Chemistry, 126(1–4): 163–172CrossRefGoogle Scholar
  34. Ray R, Ganguly D, Chowdhury C, et al. 2011. Carbon sequestration and annual increase of carbon stock in a mangrove forest. Atmospheric Environment, 45: 5016–5024, doi: 10.1016/j.atmosenv. 2011.04.074CrossRefGoogle Scholar
  35. Rovai A S, Twilley R R, Castañeda-Moya E, et al. 2018. Global controls on carbon storage in mangrove soils. Nature Climate Change, 8(6): 534–538, doi: 10.1038/s41558-018-0162-5CrossRefGoogle Scholar
  36. Sherman R E, Fahey T J, Martinez P. 2003. Spatial patterns of biomass and aboveground net primary productivity in a mangrove ecosystem in the Dominican Republic. Ecosystems, 6(4): 384–398, doi: 10.1007/s10021-002-0191-8CrossRefGoogle Scholar
  37. Sitoe A A, Mandlate L J C, Guedes B S. 2014. Biomass and carbon stocks of Sofala Bay mangrove forests. Forests, 5: 1967–1981, doi: 10.3390/f5081967CrossRefGoogle Scholar
  38. Stringer C E, Tretin C C, Zarnoch S J, et al. 2015. Carbon stock of mangrove within the Zamberzi River Delta Mozambique. Forests Ecology and Management, 354: 139–148, doi: 10.1016/j.foreco. 2015.06.027CrossRefGoogle Scholar
  39. Thompson B S, Clubbe C P, Primavera J H, et al. 2014. Locally assessing the economic viability of blue carbon: a case study from Panay Island, the Philippines. Ecosystem Services, 8: 128–140, doi: 10.1016/j.ecoser.2014.03.004CrossRefGoogle Scholar
  40. Tue N T, Dung L V, Nhuan M T, et al. 2014. Carbon storage of a tropical mangrove forest in Mui Ca Mau National Park, Vietnam. Catena, 121: 119–126, doi: 10.1016/j.catena.2014.05.008CrossRefGoogle Scholar
  41. Tue N T, Hamaoka H, Sogabe A, et al. 2011. Sources of sedimentary organic carbon in mangrove ecosystems from Ba Lat Estuary, Red River, Vietnam. In: Omori K, Guo Xinyu, Yoshie N, et al., eds. Interdisciplinary Studies on Environmental Chemistry-Marine Environmental Modeling & Analysis. Terrapub: Center for Marine Environmental Studies, 151–157Google Scholar
  42. Twilley R R, Chen R H, Hargis T. 1992. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water, Air, and Soil Pollution, 64(1–2): 265–288CrossRefGoogle Scholar
  43. Walton M, Al-Maslamani I, Skov M W, et al. 2014. Outwelling from arid mangrove systems is sustained by inwelling of seagrass productivity. Marine Ecology Progress Series, 507: 125–137, doi: 10.3354/meps10827CrossRefGoogle Scholar
  44. Wang Gang, Guan Dongsheng, Peart M R, et al. 2013. Ecosystem carbon stocks of mangrove forest in Yingluo Bay, Guangdong Province of South China. Forest Ecology and Management, 310: 539–546, doi: 10.1016/j.foreco.2013.08.045CrossRefGoogle Scholar
  45. Wooller M, Smallwood B, Jacobson M, et al. 2003. Carbon and nitrogen stable isotopic variation in Laguncularia racemosa (L.) (white mangrove) from Florida and Belize: implications for trophic level studies. Hydrobiologia, 499(1–3): 13–23CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shunyang Chen
    • 1
  • Bin Chen
    • 1
  • Pramudji Sastrosuwondo
    • 2
  • I Wayan Eka Dharmawan
    • 2
    • 3
  • Danyun Ou
    • 1
  • Xijie Yin
    • 1
  • Weiwei Yu
    • 1
  • Guangcheng Chen
    • 1
  1. 1.Third Institute of OceanographyMinistry of Natural ResourcesXiamenChina
  2. 2.Research Center for OceanographyIndonesian Institute of SciencesJakartaIndonesia
  3. 3.Technical Implementing Unit Marine Life Conservation BiakIndonesian Institute of SciencesBiakIndonesia

Personalised recommendations