Acta Oceanologica Sinica

, Volume 37, Issue 8, pp 84–90 | Cite as

Leaching of dissolved organic matter from seagrass leaf litter and its biogeochemical implications

  • Songlin Liu
  • Zhijian Jiang
  • Chenyuan Zhou
  • Yunchao Wu
  • Iman Arbi
  • Jingping Zhang
  • Xiaoping Huang
  • Stacey M. Trevathan-Tackett


Dissolved organic matter (DOM) represents a significant source of nutrients that supports the microbial-based food web in seagrass ecosystems. However, there is little information on how the various fractions of DOM from seagrass leaves contributed to the coastal biogeochemical cycles. To address this gap, we carried out a 30-day laboratory chamber experiment on tropical seagrasses Thalassia hemprichii and Enhalus acoroides. After 30 days of incubation, on average 22% carbon (C), 70% nitrogen (N) and 38% phosphorus (P) of these two species of seagrass leaf litter was released. The average leached dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) of these two species of seagrass leaf litter accounted for 55%, 95% and 65% of the total C, N and P lost, respectively. In the absence of microbes, about 75% of the total amount of DOC, monosaccharides (MCHO), DON and DOP were quickly released via leaching from both seagrass species in the first 9 days. Subsequently, little DOM was released during the remainder of the experiment. The leaching rates of DOC, DON and DOP were approximately 110, 40 and 0.70 µmol/(g·d). Leaching rates of DOM were attributed to the nonstructural carbohydrates and other labile organic matter within the seagrass leaf. Thalassia hemprichii leached more DOC, DOP and MCHO than E. acoroides. In contrast, E. acoroides leached higher concentrations of DON than T. hemprichii, with the overall leachate also having a higher DON: DOP ratio. These results indicate that there is an overall higher amount of DOM leachate from T. hemprichii than that of E. acoroides that is available to the seagrass ecosystem. According to the logarithmic model for DOM release and the in situ leaf litter production (the Xincun Bay, South China Sea), the seagrass leaf litter of these two seagrass species could release approximately 4×103 mol/d DOC, 1.4×103 mol/d DON and 25 mol/d DOP into the seawater. In addition to providing readily available nutrients for the microbial food web, the remaining particulate organic matter (POM) from the litter would also enter microbial remineralization processes. What is not remineralized from either DOM or POM fractions has potential to contribute to the permanent carbon stocks.

Key words

dissolved organic matter Thalassia hemprichii Enhalus acoroides leaf litter leaching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen S E. 1989. Chemical Analysis of Ecological Materials. Oxford: Blackwell Scientific PublicationsGoogle Scholar
  2. Aminot A, Kérouel R. 2004. Dissolved organic carbon, nitrogen and phosphorus in the N–E Atlantic and the N–W Mediterranean with particular reference to non–refractory fractions and degradation. Deep Sea Res Part I Oceanogr Res Pap, 51(12): 1975–1999CrossRefGoogle Scholar
  3. Apostolaki E T, Marbà N, Holmer M, et al. 2009. Fish farming enhances biomass and nutrient loss in Posidonia oceanica (L.) Delile. Estuar Coast Shelf Sci, 81(3): 390–400CrossRefGoogle Scholar
  4. Barrón C, Duarte C M. 2009. Dissolved organic matter release in a Posidonia oceanica meadow. Mar Ecol Prog Ser, 374: 75–84CrossRefGoogle Scholar
  5. Bronk D A, Lomas M W, Glibert P M, et al. 2000. Total dissolved nitrogen analysis: comparisons between the persulfate, UV and high temperature oxidation methods. Mar Chem, 69(1–2): 163–178CrossRefGoogle Scholar
  6. Burke M K, Dennison W C, Moore K A. 1996. Non–structural carbohydrate reserves of eelgrass Zostera marina. Mar Ecol Prog Ser, 137: 195–201CrossRefGoogle Scholar
  7. Cebrian J, Duarte C M. 2001. Detrital stocks and dynamics of the seagrass Posidonia oceanica (L.) Delile in the Spanish Mediterranean. Aquat Bot, 70(4): 295–309CrossRefGoogle Scholar
  8. Cebrián J, Duarte C M, Marbà N, et al. 1996. Herbivory on Posidonia oceanica: magnitude and variability in the Spanish Mediterranean. Mar Ecol Prog Ser, 130: 147–155CrossRefGoogle Scholar
  9. Chiu S H, Huang Y H, Lin H J. 2013. Carbon budget of leaves of the tropical intertidal seagrass Thalassia hemprichii. Estuar Coast Shelf Sci, 125: 27–35CrossRefGoogle Scholar
  10. Collier C J, Lavery P S, Ralph P J, et al. 2009. Shade–induced response and recovery of the seagrass Posidonia sinuosa. J Exp Mar Biol Ecol, 370(1–2): 89–103CrossRefGoogle Scholar
  11. Dawes C, Chan M, Chinn R, et al. 1987. Proximate composition, photosynthetic and respiratory responses of the seagrass Halophila engelmannii from Florida. Aquat Bot, 27(2): 195–201CrossRefGoogle Scholar
  12. Duarte C M. 1990. Seagrass nutrient content. Mar Ecol Prog Ser, 67: 201–207CrossRefGoogle Scholar
  13. Duarte C M, Chiscano C L. 1999. Seagrass biomass and production: a reassessment. Aquat Bot, 65(1–4): 159–174CrossRefGoogle Scholar
  14. Duarte C M, Krause–Jensen D. 2017. Export from seagrass meadows contributes to marine carbon sequestration. Front Mar Sci, 4: 13Google Scholar
  15. Duarte C M, Marbà N, Gacia E, et al. 2010. Seagrass community metabolism: assessing the carbon sink capacity of seagrass meadows. Globa Biogeochem Cycles, 24(4): GB4032CrossRefGoogle Scholar
  16. Duarte C M, Merino M, Agawin N S R, et al. 1998. Root production and belowground seagrass biomass. Mar Ecol Prog Ser, 171: 97–108CrossRefGoogle Scholar
  17. Fourqurean J W, Zieman J C, Powell G V N. 1992. Phosphorus limitation of primary production in Florida Bay: evidence from C:N:P ratios of the dominant seagrass Thalassia testudinum. Limnol Oceanogr, 37(1): 162–171CrossRefGoogle Scholar
  18. Godshalk G L, Wetzel R G. 1978. Decomposition of aquatic angiosperms. III. Zostera marina L. and a conceptual model of decomposition. Aquat Bot, 5: 329–354Google Scholar
  19. Grasshoff K, Kremling K, Ehrhardt M. 2009. Methods of Seawater Analysis. 3rd ed. New York: John Wiley & SonsGoogle Scholar
  20. Harrison P G. 1989. Detrital processing in seagrass systems: a review of factors affecting decay rates, remineralization and detritivory. Aquat Bot, 35(3–4): 263–288CrossRefGoogle Scholar
  21. Harrison P G, Mann K H. 1975. Detritus formation from eelgrass (Zostera marina L.): the relative effects of fragmentation, leaching, and decay. Limnol Oceanogr, 20(6): 924–934CrossRefGoogle Scholar
  22. Hemminga M A, Duarte C M. 2000. Seagrass Ecology. Cambridge: Cambridge University PressCrossRefGoogle Scholar
  23. Hemminga M A, Marbà N, Stapel J. 1999. Leaf nutrient resorption, leaf lifespan and the retention of nutrients in seagrass systems. Aquat Bot, 65(1–4): 141–158CrossRefGoogle Scholar
  24. Holmer M, Olsen A B. 2002. Role of decomposition of mangrove and seagrass detritus in sediment carbon and nitrogen cycling in a tropical mangrove forest. Mar Ecol Prog Ser, 230: 87–101CrossRefGoogle Scholar
  25. Huang Xiaoping, Huang Liangmin, Li Yinghong, et al. 2006. Main seagrass beds and threats to their habitats in the coastal sea of South China. Chin Sci Bull, 51(S2): 136–142CrossRefGoogle Scholar
  26. Invers O, Kraemer G P, Pérez M, et al. 2004. Effects of nitrogen addition on nitrogen metabolism and carbon reserves in the temperate seagrass Posidonia oceanica. J Exp Mar Biol Ecol, 303(1): 97–114CrossRefGoogle Scholar
  27. Jiménez M A, Beltran R, Traveset A, et al. 2017. Aeolian transport of seagrass (Posidonia oceanica) beach–cast to terrestrial systems. Estuar Coast Shelf Sci, 196: 31–44CrossRefGoogle Scholar
  28. Kirkman H, Reid D D. 1979. A study of the role of the seagrass Posidonia australis in the carbon budget of an estuary. Aquat Bot, 7: 173–183CrossRefGoogle Scholar
  29. Lavery P S, McMahon K, Weyers J, et al. 2013. Release of dissolved organic carbon from seagrass wrack and its implications for trophic connectivity. Mar Ecol Prog Ser, 494: 121–133CrossRefGoogle Scholar
  30. Lawler I R, Aragones L, Berding N, et al. 2006. Near–infrared reflectance spectroscopy is a rapid, cost–effective predictor of seagrass nutrients. J Chem Ecol, 32(6): 1353–1365CrossRefGoogle Scholar
  31. Lee K S, Dunton K H. 1996. Production and carbon reserve dynamics of the seagrass Thalassia testudinum in Corpus Christi Bay, Texas, USA. Mar Ecol Prog Ser, 143: 201–210CrossRefGoogle Scholar
  32. Liu Songlin, Jiang Zhijian, Zhang Jingping, et al. 2016a. Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea. Mar Pollut Bull, 110(1): 274–280CrossRefGoogle Scholar
  33. Liu Songlin, Jiang Zhijian, Zhou Chenyuan, et al. 2016b. Temporal and spatial variation of dissolved organic matter and its controlling factors in seagrass bed ecosystem of Xincun Bay, Hainan Island. Chinese Journal of Ecology (in Chinese), 35(8): 2144–2151Google Scholar
  34. Longstaff B J, Loneragan N R, O’Donohue M J, et al. 1999. Effects of light deprivation on the survival and recovery of the seagrass Halophila ovalis (R.Br.) Hook. J Exp Mar Biol Ecol, 234(1): 1–27CrossRefGoogle Scholar
  35. Mackey P, Collier C J, Lavery P S. 2007. Effects of experimental reduction of light availability on the seagrass Amphibolis griffithii. Mar Ecol Prog Ser, 342: 117–126CrossRefGoogle Scholar
  36. Maie N, Jaffé R, Miyoshi T, et al. 2006. Quantitative and qualitative aspects of dissolved organic carbon leached from senescent plants in an oligotrophic wetland. Biogeochemistry, 78(3): 285–314CrossRefGoogle Scholar
  37. Mateo M A, Romero J. 1996. Evaluating seagrass leaf litter decomposition: an experimental comparison between litter–bag and oxygen–uptake methods. J Exp Mar Biol Ecol, 202(2): 97–106CrossRefGoogle Scholar
  38. Mateo M A, Cebrián J, Dunton K, et al. 2006. Carbon flux in seagrass ecosystems. In: Larkum A W D, Orth R J, Duarte C M, eds. Seagrasses: Biology, Ecology and Conservation. Dordrecht: Springer, 159–192Google Scholar
  39. Myklestad S M, Skånøy E, Hestmann S. 1997. A sensitive and rapid method for analysis of dissolved mono–and polysaccharides in seawater. Mar Chem, 56(3–4): 279–286CrossRefGoogle Scholar
  40. Ogawa H, Tanoue E. 2003. Dissolved organic matter in oceanic waters. J Oceanogr, 59(2): 129–147CrossRefGoogle Scholar
  41. Olivé I, Brun F G, Vergara J J, et al. 2007. Effects of light and biomass partitioning on growth, photosynthesis and carbohydrate content of the seagrass Zostera noltii Hornem. J Exp Mar Biol Ecol, 345(2): 90–100CrossRefGoogle Scholar
  42. Orth R J, Moore K A. 1986. Seasonal and year–to–year variations in the growth of Zostera marina L. (eelgrass) in the lower Chesapeake Bay. Aquat Bot, 24(4): 335–341CrossRefGoogle Scholar
  43. Peduzzi P, Herndl G J. 1991. Decomposition and significance of seagrass leaf litter (Cymodocea nodosa) for the microbial food web in coastal waters (Gulf of Trieste, northern Adriatic Sea). Mar Ecol Prog Ser, 71(2): 163–174CrossRefGoogle Scholar
  44. Pierzynski G M. 2000. Methods of phosphorus analysis for soils, sediments, residuals, and waters. Raleigh: North Carolina State UniversityGoogle Scholar
  45. Robertson M L, Mills A L, Zieman J C. 1982. Microbial synthesis of detritus–like particulates from dissolved organic carbon released by tropical seagrasses. Mar Ecol Prog Ser, 7: 279–285CrossRefGoogle Scholar
  46. Sheppard J K, Lawler I R, Marsh H. 2007. Seagrass as pasture for seacows: landscape–level dugong habitat evaluation. Estuar Coast Shelf Sci, 71(1–2): 117–132CrossRefGoogle Scholar
  47. Siegal–Willott J L, Harr K, Hayek L A C, et al. 2010. Proximate nutrient analyses of four species of submerged aquatic vegetation consumed by Florida manatee (Trichechus manatus latirostris) compared to romaine lettuce (Lactuca sativa var. longifolia). J Zoo Wildl Med, 41(4): 594–602CrossRefGoogle Scholar
  48. Trevathan–Tackett S M, Macreadie P I, Sanderman J, et al. 2017. A global assessment of the chemical recalcitrance of seagrass tissues: implications for long–term carbon sequestration. Front Plant Sci, 8: 925CrossRefGoogle Scholar
  49. Vähätalo A V, Søndergaard M. 2002. Carbon transfer from detrital leaves of eelgrass (Zostera marina) to bacteria. Aquat Bot, 73(3): 265–273CrossRefGoogle Scholar
  50. Valderrama J C. 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Mar Chem, 10(2): 109–122CrossRefGoogle Scholar
  51. Vichkovitten T, Holmer M. 2004. Contribution of plant carbohydrates to sedimentary carbon mineralization. Org Geochem, 35(9): 1053–1066CrossRefGoogle Scholar
  52. Vizzini S, Sarà G, Michener R H, et al. 2002. The role and contribution of the seagrass Posidonia oceanica (L.) Delile organic matter for secondary consumers as revealed by carbon and nitrogen stable isotope analysis. Acta Oecol, 23(4): 277–285CrossRefGoogle Scholar
  53. Wang Xuchen, Chen R F, Cable J E, et al. 2014. Leaching and microbial degradation of dissolved organic matter from salt marsh plants and seagrasses. Aquat Sci, 76(4): 595–609CrossRefGoogle Scholar
  54. Yarbro L A, Carlson Jr P R. 2008. Community oxygen and nutrient fluxes in seagrass beds of Florida Bay, USA. Estuar Coasts, 31(5): 877–897CrossRefGoogle Scholar
  55. Yemm E W, Willis A J. 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochem J, 57(3): 508–514CrossRefGoogle Scholar
  56. Ziegler S, Benner R. 1999. Dissolved organic carbon cycling in a subtropical seagrass–dominated lagoon. Mar Ecol Prog Ser, 180: 149–160CrossRefGoogle Scholar
  57. Ziegler S, Kaiser E, Benner R. 2004. Dynamics of dissolved organic carbon, nitrogen and phosphorus in a seagrass meadow of Laguna Madre, Texas. Bull Mar Sci, 75(3): 391–407Google Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Songlin Liu
    • 1
    • 2
  • Zhijian Jiang
    • 1
  • Chenyuan Zhou
    • 1
    • 2
  • Yunchao Wu
    • 1
    • 2
  • Iman Arbi
    • 1
    • 2
  • Jingping Zhang
    • 1
  • Xiaoping Huang
    • 1
    • 2
  • Stacey M. Trevathan-Tackett
    • 3
  1. 1.Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.School of Life and Environmental Sciences, Centre for Integrative EcologyDeakin UniversityVictoriaAustralia

Personalised recommendations