Acta Oceanologica Sinica

, Volume 37, Issue 4, pp 89–101 | Cite as

Phylogenetic analyses of the genes involved in carotenoid biosynthesis in algae

  • Shanshan Wang
  • Lei Zhang
  • Shan Chi
  • Guoliang Wang
  • Xumin Wang
  • Tao Liu
  • Xuexi Tang
Article
  • 9 Downloads

Abstract

Carotenoids play a crucial role in absorbing light energy for photosynthesis, as well as in protecting chlorophyll from photodamage. In contrast to the Streptophyta, few studies have examined carotenoid biosynthetic pathways in algae, owing to a shortage of datasets. As part of the 1000 Plants Project, we sequenced and assembled the transcriptomes of 41 marine macroalgal species, including 22 rhodophytes and 19 phaeophytes, and then combined the datasets with publicly available data from GenBank (National Center for Biotechnology Information) and the U.S. Department of Energy Joint Genome Institute. As a result, we identified 68 and 79 fulllength homologs in the Rhodophyta and Phaeophyceae, respectively, of seven inferred carotenoid biosynthetic genes, including the genes for phytoene synthase (PSY), phytoene desaturase (PDS), ζ-carotene desaturase (ZDS), ζ-carotene isomerase (Z-ISO), prolycopene isomerase (crtISO), lycopene β-cyclase (LCYB), and lycopene ε-cyclase (LCYE). We found that the evolutionary history of the algal carotenoid biosynthetic pathway was more complex than that of the same pathway in the Streptophyta and, more specifically, that the evolutionary history involved endosymbiotic gene transfer, gene duplication, and gene loss. Almost all of the eukaryotic algae that we examined had inherited the seven carotenoid biosynthesis genes via endosymbiotic gene transfer. Moreover, PSY, crtISO, and the ancestral lycopene cyclase gene (LCY) underwent duplication events that resulted in multiple gene copies, and the duplication and subsequent divergence of LCYB and LCYE specialized and complicated the cyclization of lycopene. Our findings also verify that the loss of LCYE in both the microphytic rhodophytes and phaeophytes explains the differences in their carotenoid patterns, when compared to the macrophytic rhodophytes. These analyses provide a molecular basis for further biochemical and physiological validation in additional algal species and should help elucidate the origin and evolution of carotenoid biosynthetic pathways.

Keywords

carotenoid biosynthesis algae phylogenetic analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are grateful to Michael Melkonian from Universität zu Köln for providing transcriptomic data for Glaucophyta, Cryptophyta, and Haptophyta.

References

  1. Bartnikas T B, Tosques I E, Laratta W P, et al. 1997. Characterization of the nitric oxide reductase-encoding region in Rhodobacter sphaeroides 2.4.3. J Bacteriol, 179(11): 3534–3540CrossRefGoogle Scholar
  2. Bhattacharya D, Medlin L. 1998. Algal phylogeny and the origin of land plants. Plant Physiol, 116(1): 9–15CrossRefGoogle Scholar
  3. Breitenbach J, Sandmann G. 2005. ζ-Carotene cis isomers as products and substrates in the plant polycis carotenoid biosynthetic pathway to lycopene. Planta, 220(5): 785–793CrossRefGoogle Scholar
  4. Cavalier-Smith T. 1999. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol, 46(4): 347–366CrossRefGoogle Scholar
  5. Chai Chenglin, Fang Jun, Liu Yang, et al. 2011. ZEBRA2, encoding a carotenoid isomerase, is involved in photoprotection in rice. Plant Mol Biol, 75(3): 211–221CrossRefGoogle Scholar
  6. Chen Qian, Jiang Jianguo, Wang Fei. 2007. Molecular phylogenies and evolution of crt genes in algae. Crit Rev Biotechnol, 27(2): 77–91CrossRefGoogle Scholar
  7. Chen Yu, Li Faqiang, Wurtzel E T. 2010. Isolation and characterization of the Z-ISO gene encoding a missing component of carotenoid biosynthesis in plants. Plant Physiol, 153(1): 66–79CrossRefGoogle Scholar
  8. Cui Hongli, Wang Yinchu, Qin Song. 2011. Molecular evolution of lycopene cyclases involved in the formation of carotenoids in eukaryotic algae. Plant Mol Biol Rep, 29(4): 1013–1020CrossRefGoogle Scholar
  9. Cunningham F X, Gantt E. 1998. Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol, 49: 557–583CrossRefGoogle Scholar
  10. Cunningham F X Jr, Lee H, Gantt E. 2007. Carotenoid biosynthesis in the primitive red alga Cyanidioschyzon merolae. Eukaryot Cell, 6(3): 533–545CrossRefGoogle Scholar
  11. Cunningham F X, Pogson B, Sun Zairen, et al. 1996. Functional analysis of the ß and e lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell, 8(9): 1613–1626Google Scholar
  12. Cunningham F X, Sun Zairen, Chamovitz D, et al. 1994. Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942. Plant Cell, 6(8): 1107–1121CrossRefGoogle Scholar
  13. Dogbo O, Laferriére A, D’Harlingue A, et al. 1988. Carotenoid biosynthesis: Isolation and characterization of a bifunctional enzyme catalyzing the synthesis of phytoene. Proc Natl Acad Sci USA, 85(19): 7054–7058CrossRefGoogle Scholar
  14. Douzery E J P, Snell E A, Bapteste E, et al. 2004. The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils?. Proc Natl Acad Sci USA, 101(43): 15386–15391CrossRefGoogle Scholar
  15. Frigaard N U, Maresca J A, Yunker C E, et al. 2004. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum. J Bacteriol, 186(16): 5210–5220CrossRefGoogle Scholar
  16. Giuliano G, Giliberto L, Rosati C. 2002. Carotenoid isomerase: a tale of light and isomers. Trends Plant Sci, 7(10): 427–429CrossRefGoogle Scholar
  17. Gruszecki W I, Strzalka K. 2005. Carotenoids as modulators of lipid membrane physical properties. Biochim Biophys Acta, 1740(2): 108–115CrossRefGoogle Scholar
  18. Hittinger C T, Carroll S B. 2007. Gene duplication and the adaptive evolution of a classic genetic switch. Nature, 449(7163): 677–681CrossRefGoogle Scholar
  19. Isaacson T, Ohad I, Beyer P, et al. 2004. Analysis in vitro of the enzyme CRTISO establishes a polycis-carotenoid biosynthesis pathway in plants. Plant Physiol, 136(4): 4246–4255CrossRefGoogle Scholar
  20. Johnson M T J, Carpenter E J, Tian Zhijian, et al. 2012. Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes. PLoS One, 7(11): e50226CrossRefGoogle Scholar
  21. Keeling P J, Palmer J D. 2008. Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet, 9(8): 605–618CrossRefGoogle Scholar
  22. Klassen J L. 2010. Phylogenetic and evolutionary patterns in microbial carotenoid biosynthesis are revealed by comparative genomics. PLoS One, 5(6): e11257CrossRefGoogle Scholar
  23. Krubasik P, Sandmann G. 2000. Molecular evolution of lycopene cyclases involved in the formation of carotenoids with ionone end groups. Biochem Soc Trans, 28(6): 806–810CrossRefGoogle Scholar
  24. Ladygin V G. 2000. Biosynthesis of carotenoids in the chloroplasts of algae and higher plants. Russ J Plant Physl, 47(6): 796–814CrossRefGoogle Scholar
  25. Li Ruiqiang, Li Yingrui, Kristiansen K, et al. 2008a. SOAP: short oligonucleotide alignment program. Bioinformatics, 24(5): 713–714CrossRefGoogle Scholar
  26. Li Faqiang, Murillo C, Wurtzel E T. 2007. Maize Y9 encodes a product essential for 15-cis-ζ-carotene isomerization. Plant Physiol, 144(2): 1181–1189CrossRefGoogle Scholar
  27. Li Tianyong, Ren Lei, Zhou Guan, et al. 2012. A suitable method for extracting total RNA from red algae. Transactions of Oceanology and Limnology (in Chinese), (4): 64–71Google Scholar
  28. Li Faqiang, Vallabhaneni R, Wurtzel E T. 2008b. PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiol, 146(3): 1333–1345CrossRefGoogle Scholar
  29. Li Huanqin, Wang Wenlei, Wang Zhaokai, et al. 2016. De novo transcriptome analysis of carotenoid and polyunsaturated fatty acid metabolism in Rhodomonas sp. J Appl Phycol, 28(3): 1649–1656CrossRefGoogle Scholar
  30. Li Ruiqiang, Zhu Hongmei, Ruan Jue, et al. 2010. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res, 20(2): 265–272CrossRefGoogle Scholar
  31. Lichtenthaler H K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol, 148: 350–382CrossRefGoogle Scholar
  32. Lohr M, Im C S, Grossman A R. 2005. Genome-based examination of chlorophyll and carotenoid biosynthesis in Chlamydomonas reinhardtii. Plant Physiol, 138(1): 490–515CrossRefGoogle Scholar
  33. Lund A, Andersson P, Eriksson J, et al. 2008. Automatic fitting procedures for EPR s pectra of disordered systems: matrix diagonalization and perturbation methods applied to fluorocarbon radicals. Spectrochim Acta Part A, 69(5): 1294–300CrossRefGoogle Scholar
  34. Martin W, Herrmann R G. 1998. Gene transfer from organelles to the nucleus: how much, what happens, and why?. Plant Physiol, 118(1): 9–17CrossRefGoogle Scholar
  35. Martin W, Rujan T, Richly E, et al. 2002. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA, 99(19): 12246–12251CrossRefGoogle Scholar
  36. Masamoto K, Wada H, Kaneko T, et al. 2001. Identification of a gene required for cis-to-trans carotene isomerization in carotenogenesis of the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol, 42(12): 1398–1402CrossRefGoogle Scholar
  37. Matthews P D, Luo Ruibai, Wurtzel E T. 2003. Maize phytoene desaturase and ζ-carotene desaturase catalyse a poly-=Z desaturation pathway: implications for genetic engineering of carotenoid content among cereal crops. J Exp Bot, 54(391): 2215–2230CrossRefGoogle Scholar
  38. McFadden G I. 2001. Primary and secondary endosymbiosis and the origin of plastids. J Phycol, 37(6): 951–959CrossRefGoogle Scholar
  39. McFadden G I. 2001. Chloroplast origin and integration. Plant Physiol, 125(1): 50–53CrossRefGoogle Scholar
  40. Millen R S, Olmstead R G, Adams K L, et al. 2001. Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell, 13(3): 645–658CrossRefGoogle Scholar
  41. Moriya Y, Itoh M, Okuda S, et al. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res, 35(S2): W182–W185CrossRefGoogle Scholar
  42. Ni Ting, Yue Jipei, Sun Guiling, et al. 2012. Ancient gene transfer from algae to animals: mechanisms and evolutionary significance. BMC Evol Biol, 12: 83CrossRefGoogle Scholar
  43. Nisar N, Li Li, Lu Shan, et al. 2015. Carotenoid metabolism in plants. Mol Plant, 8(1): 68–82CrossRefGoogle Scholar
  44. Park H, Kreunen S S, Cuttriss A J, et al. 2002. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell, 14(2): 321–332CrossRefGoogle Scholar
  45. Ronquist F, Huelsenbeck J P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12): 1572–1574CrossRefGoogle Scholar
  46. Ruiz-Sola M Á, Rodríguez-Concepción M. 2012. Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book, 10: e0158CrossRefGoogle Scholar
  47. Sandmann G. 1994. Carotenoid biosynthesis in microorganisms and plants. Eur J Biochem, 223(1): 7–24CrossRefGoogle Scholar
  48. Sandmann G. 2002. Molecular evolution of carotenoid biosynthesis from bacteria to plants. Physiol Plant, 116(4): 431–440CrossRefGoogle Scholar
  49. Sandmann G. 2009. Evolution of carotene desaturation: the complication of a simple pathway. Arch Biochem Biophys, 483(2): 169–174CrossRefGoogle Scholar
  50. Sievers F, Wilm A, Dineen D, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol, 7: 539CrossRefGoogle Scholar
  51. Stickforth P, Steiger S, Hess W R, et al. 2003. A novel type of lycopene ecyclase in the marine cyanobacterium Prochlorococcus marinus MED4. Arch Microbiol, 179(6): 409–415CrossRefGoogle Scholar
  52. Takaichi S. 2011. Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs, 9(6): 1101–1118CrossRefGoogle Scholar
  53. Takaichi S, Yokoyama A, Mochimaru M, et al. 2016. Carotenogenesis diversification in phylogenetic lineages of Rhodophyta. J Phycol, 52(3): 329–338CrossRefGoogle Scholar
  54. Tamura K, Peterson D, Peterson N, et al. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 28(10): 2731–2739CrossRefGoogle Scholar
  55. Thompson J D, Gibson T J, Plewniak F, et al. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 25(24): 4876–4882CrossRefGoogle Scholar
  56. Timmis J N, Ayliffe M A, Huang C Y, et al. 2004. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet, 5(2): 123–135CrossRefGoogle Scholar
  57. Tran D, Haven J, Qiu Weigang, et al. 2009. An update on carotenoid biosynthesis in algae: phylogenetic evidence for the existence of two classes of phytoene synthase. Planta, 229(3): 723–729CrossRefGoogle Scholar
  58. Vílchez C, Forján E, Cuaresma M, et al. 2011. Marine carotenoids: biological functions and commercial applications. Mar Drugs, 9(3): 319–333CrossRefGoogle Scholar
  59. Walter M H, Strack D. 2011. Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep, 28(4): 663–692CrossRefGoogle Scholar
  60. Yu Qiuju, Ghisla S, Hirschberg J, et al. 2011. Plant carotene cis-trans isomerase CRTISO: a new member of the FADred-dependent flavoproteins catalyzing non-redox reactions. J Biol Chem, 286(10): 8666–8676CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shanshan Wang
    • 1
  • Lei Zhang
    • 1
  • Shan Chi
    • 1
  • Guoliang Wang
    • 2
  • Xumin Wang
    • 2
  • Tao Liu
    • 1
  • Xuexi Tang
    • 1
  1. 1.College of Marine Life SciencesOcean University of ChinaQingdaoChina
  2. 2.CAS Key Laboratory of Genome Sciences and Information/Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina

Personalised recommendations