Acta Oceanologica Sinica

, Volume 37, Issue 11, pp 53–60 | Cite as

Modeling of normal faulting in the subducting plates of the Tonga, Japan, Izu-Bonin and Mariana Trenches: implications for near-trench plate weakening

  • Zhiyuan Zhou
  • Jian LinEmail author
  • Fan Zhang


The plate flexure and normal faulting characteristics along the Tonga, Japan, Izu-Bonin and Mariana Trenches are investigated by combining observations and modeling of elastoplastic deformation of the subducting plate. The observed average trench relief is found to be the smallest at the Japan Trench (3 km) and the largest at the Mariana Trench (4.9 km), and the average fault throw is the smallest at the Japan Trench (113 m) and the largest at the Tonga Trench (284 m). A subducting plate is modeled to bend and generate normal faults subjected to three types of tectonic loading at the trench axis: vertical loading, bending moment, and horizontal tensional force. It is inverted for the solutions of tectonic loading that best fit the observed plate flexure and normal faulting characteristics of the four trenches. The results reveal that a horizontal tensional force (HTF) for the Japan Trench is 33%, 50% and 60% smaller than those of the Mariana, Tonga and Izu-Bonin Trenches, respectively. The normal faults are modeled to penetrate to a maximum depth of 29, 23, 32 and 32 km below the sea floor for the Tonga, Japan, Izu-Bonin and Mariana Trenches, respectively, which is consistent with the depths of relocated normal faulting earthquakes in the Japan and Izu-Bonin Trenches. Moreover, it is argued that the calculated horizontal tensional force is generally positively correlated with the observed mean fault throw, while the integrated area of the reduction in the effective elastic thickness is correlated with the trench relief. These results imply that the HTF plays a key role in controlling the normal faulting pattern and that plate weakening can lead to significant increase in the trench relief.

Key words

normal fault geodynamic model plate weakening flexural bending elasto-plastic deformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to the staff and students of the deep sea geodynamics group of the South China Sea Institute of Oceanology, the Chinese Academy of Sciences for constructive discussion and suggestions.


  1. Beavan J, Wang X, Holden C, et al. 2010. Near-simultaneous great earthquakes at Tongan megathrust and outer rise in September 2009. Nature, 466(7309): 959–963, doi: 10.1038/nature09292CrossRefGoogle Scholar
  2. Behn M D, Ito G. 2008. Magmatic and tectonic extension at midocean ridges: 1. Controls on fault characteristics. Geochemistry, Geophysics, Geosystems, 9(8): Q08O10Google Scholar
  3. Buck W R, Lavier L L, Poliakov A N B. 2005. Modes of faulting at midocean ridges. Nature, 434(7034): 719–723, doi: 10.1038/nature03358CrossRefGoogle Scholar
  4. Buck W R, Poliakov A N B. 1998. Abyssal hills formed by stretching oceanic lithosphere. Nature, 392(6673): 272–275, doi: 10.1038/32636CrossRefGoogle Scholar
  5. Christensen D H, Ruff L J. 1983. Outer-rise earthquakes and seismic coupling. Geophysical Research Letters, 10(8): 697–700, doi: 10.1029/GL010i008p00697CrossRefGoogle Scholar
  6. Cundall P A. 1989. Numerical experiments on localization in frictional materials. Ingenieur-archiv, 59(2): 148–159, doi: 10.1007/BF00538368CrossRefGoogle Scholar
  7. De Bremaecker J C. 1977. Is the oceanic lithosphere elastic or viscous? Journal of Geophysical Research, 82: 2001–2004, doi: 10.1029/JB082i014p02001CrossRefGoogle Scholar
  8. Emry E L, Wiens D A. 2015. Incoming plate faulting in the northern and western Pacific and implications for subduction zone water budgets. Earth and Planetary Science Letters, 414: 176–186, doi: 10.1016/j.epsl.2014.12.042CrossRefGoogle Scholar
  9. Faccenda M. 2014. Water in the slab: A trilogy. Tectonophysics, 614(3): 1–30CrossRefGoogle Scholar
  10. Garcia-Castellanos D, Torne M, Fernàndez M. 2000. Slab pull effects from a flexural analysis of the Tonga and Kermadec Trenches (Pacific plate). Geophysical Journal International, 141(2): 479–484, doi: 10.1046/j.1365-246x.2000.00096.xCrossRefGoogle Scholar
  11. Grevemeyer I, Kaul N, Diaz-Naveas J L, et al. 2005. Heat flow and bending-related faulting at subduction trenches: Case studies offshore of Nicaragua and Central Chile. Earth and Planetary Science Letters, 236(1–2): 238–248, doi: 10.1016/j.epsl.2005.04.048CrossRefGoogle Scholar
  12. Grevemeyer I, Ranero C R, Flueh E R, et al. 2007. Passive and active seismological study of bending-related faulting and mantle serpentinization at the Middle America trench. Earth and Planetary Science Letters, 258(3–4): 528–542, doi: 10.1016/j.epsl.2007.04.013CrossRefGoogle Scholar
  13. Han Shuoshuo, Carbotte S M, Canales J P, et al. 2016. Seismic reflection imaging of the Juan de Fuca plate from ridge to trench: New constraints on the distribution of faulting and evolution of the crust prior to subduction. Journal of Geophysical Research, 121(3): 1849–1872Google Scholar
  14. Hilde T W C. 1983. Sediment subduction versus accretion around the pacific. Tectonophysics, 99(2–4): 381–397, doi: 10.1016/0040-1951(83)90114-2CrossRefGoogle Scholar
  15. Hunter J, Watts A B. 2016. Gravity anomalies, flexure and mantle rheology seaward of circum-Pacific trenches. Geophysical Journal International, 207(1): 288–316, doi: 10.1093/gji/ggw275CrossRefGoogle Scholar
  16. Jaeger J C, Cook N G. 1979. Fundamentals of rock mechanics. London: Chapman and Hall, 513Google Scholar
  17. Kanamori H. 1971. Seismological evidence for a lithospheric normal faulting-the Sanriku earthquake of 1933. Physics of the Earth and Planetary Interiors, 4(4): 289–300, doi: 10.1016/0031-9201(71)90013-6CrossRefGoogle Scholar
  18. Kao H, Chen W P. 1996. Seismicity in the outer rise-forearc region and configuration of the subducting lithosphere with special reference to the Japan Trench. Journal of Geophysical Research: Solid Earth, 101(B12): 27811–27831, doi: 10.1029/96JB01760CrossRefGoogle Scholar
  19. Key K, Constable S, Matsuno T, et al. 2012. Electromagnetic detection of plate hydration due to bending faults at the Middle America Trench. Earth and Planetary Science Letters, 351: 45–53CrossRefGoogle Scholar
  20. Kobayashi K, Nakanishi M, Tamaki K, et al. 1998. Outer slope faulting associated with the western Kuril and Japan trenches. Geophysical Journal International, 134(2): 356–372, doi: 10.1046/j.1365-246x.1998.00569.xCrossRefGoogle Scholar
  21. Lavier L L, Buck W R, Poliakov A N B. 1999. Self-consistent rollinghinge model for the evolution of large-offset low-angle normal faults. Geology, 27(12): 1127–1130, doi: 10.1130/0091-7613(1999)027<1127:SCRHMF>2.3.CO;2CrossRefGoogle Scholar
  22. Lavier L L, Buck W R, Poliakov A N B. 2000. Factors controlling normal fault offset in an ideal brittle layer. Journal of Geophysical Research: Solid Earth, 105(B10): 23431–23442, doi: 10.1029/2000JB900108CrossRefGoogle Scholar
  23. Lay T, Ammon C J, Kanamori H, et al. 2010. The 2009 Samoa-Tonga great earthquake triggered doublet. Nature, 466(7309): 964–968, doi: 10.1038/nature09214CrossRefGoogle Scholar
  24. Lefeldt M, Ranero C R, Grevemeyer I. 2012. Seismic evidence of tectonic control on the depth of water influx into incoming oceanic plates at subduction trenches. Geochemistry, Geophysics, Geosystems, 13(5): Q05013Google Scholar
  25. Masson D G. 1991. Fault patterns at outer trench walls. Marine Geophysical Researches, 13(3): 209–225, doi: 10.1007/BF00369150CrossRefGoogle Scholar
  26. Melosh H J. 1978. Dynamic support of the outer rise. Geophysical Research Letters, 5(5): 321–324, doi: 10.1029/GL005i005p00321CrossRefGoogle Scholar
  27. Naliboff J B, Billen M I, Gerya T, et al. 2013. Dynamics of outer rise faulting in oceanic-continental subduction systems. Geochemistry, Geophysics, Geosystems, 14(7): 2310–2327, doi: 10.1002/ggge.20155CrossRefGoogle Scholar
  28. Parsons B, Molnar P. 1976. The origin of outer topographic rises associated with trenches. Geophysical Journal International, 45(3): 707–712, doi: 10.1111/j.1365-246X.1976.tb06919.xCrossRefGoogle Scholar
  29. Poliakov A N B, Buck W R. 1998. Mechanics of stretching elasticplastic-viscous layers: Applications to slow-spreading midocean ridges. In: Buck W R, Delaney P T, Karson J A, et al, eds. Faulting and Magmatism at Mid-Ocean Ridges. Washington, D.C.: American Geophysical Union, 305–323Google Scholar
  30. Poliakov A N B, Cundall P A, Podladchikov Y Y, et al. 1993. An explicit inertial method for the simulation of viscoelastic flow: An evaluation of elastic effects on diapiric flow in two-and three-layers models. In: Stone D B, Runcorn S K, eds. Flow and Creep in the Solar System: Observations, Modeling and Theory. Dordrecht: Springer, 175–195CrossRefGoogle Scholar
  31. Ranero C R, Morgan J P, McIntosh K, et al. 2003. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425(6956): 367–373, doi: 10.1038/nature01961CrossRefGoogle Scholar
  32. Ranero C, Sallares V. 2004. Geophysical evidence for hydration of the crust and mantle of the Nazca plate during bending at the north Chile Trench. Geology, 32(7): 549–552, doi: 10.1130/G20379.1CrossRefGoogle Scholar
  33. Ranero C R, Villaseñor A, Morgan J P, et al. 2005. Relationship between bend-faulting at trenches and intermediate-depth seismicity. Geochemistry, Geophysics, Geosystems, 6(12): Q12002CrossRefGoogle Scholar
  34. Ryan W B F, Carbotte S M, Coplan J O, et al. 2009. Global multi-resolution topography synthesis. Geochemistry, Geophysics, Geosystems, 10(3): Q03014CrossRefGoogle Scholar
  35. Supak S, Bohnenstiehl D R, Buck W R. 2006. Flexing is not stretching: An analogue study of flexure-induced fault populations. Earth and Planetary Science Letters, 246(1–2): 125–137, doi: 10.1016/j.epsl.2006.03.028CrossRefGoogle Scholar
  36. Tilmann F J, Grevemeyer I, Flueh E R, et al. 2008. Seismicity in the outer rise offshore southern Chile: Indication of fluid effects in crust and mantle. Earth and Planetary Science Letters, 269(1–2): 41–55, doi: 10.1016/j.epsl.2008.01.044CrossRefGoogle Scholar
  37. Turcotte D L, Schubert G. 2014. Geodynamics. 3rd ed. Cambridge: Cambridge University Press, 156–158CrossRefGoogle Scholar
  38. Zhang Fan, Lin Jian, Zhan Wenhuan. 2014. Variations in oceanic plate bending along the Mariana Trench. Earth and Planetary Science Letters, 401: 206–214, doi: 10.1016/j.epsl.2014.05.032CrossRefGoogle Scholar
  39. Zhou Zhiyuan, Lin Jian. 2018. Elasto-plastic deformation and plate weakening due to normal faulting in the subducting plate along the Mariana Trench, Tectonophysics, 734–735, 59–68, doi: 10.1016/j.tecto.2018.04.008Google Scholar
  40. Zhou Zhiyuan, Lin Jian, Behn M D, et al. 2015. Mechanism for normal faulting in the subducting plate at the Mariana Trench. Geophysical Research Letters, 42(11): 4309–4317, doi: 10.1002/2015GL063917CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
  2. 2.Department of Geology and GeophysicsWoods Hole Oceanographic InstitutionWoods HoleUSA
  3. 3.Department of Ocean Science and EngineeringSouthern University of Science and TechnologyShenzhenChina

Personalised recommendations