Acta Oceanologica Sinica

, Volume 36, Issue 7, pp 95–101 | Cite as

Development and validation of an ocean wave retrieval algorithm for VV-polarization Sentinel-1 SAR data

  • Bo Lin
  • Weizeng Shao
  • Xiaofeng Li
  • Huan Li
  • Xiaoqing Du
  • Qiyan Ji
  • Lina Cai


The purpose is to study the accuracy of ocean wave parameters retrieved from C-band VV-polarization Sentinel-1 Synthetic Aperture Radar (SAR) images, including both significant wave height (SWH) and mean wave period (MWP), which are both calculated from a SAR-derived wave spectrum. The wind direction from in situ buoys is used and then the wind speed is retrieved by using a new C-band geophysical model function (GMF) model, denoted as C-SARMOD. Continuously, an algorithm parameterized first-guess spectra method (PFSM) is employed to retrieve the SWH and the MWP by using the SAR-derived wind speed. Forty–five VV-polarization Sentinel-1 SAR images are collected, which cover the in situ buoys around US coastal waters. A total of 52 subscenes are selected from those images. The retrieval results are compared with the measurements from in situ buoys. The comparison performs good for a wind retrieval, showing a 1.6 m/s standard deviation (STD) of the wind speed, while a 0.54 m STD of the SWH and a 2.14 s STD of the MWP are exhibited with an acceptable error. Additional 50 images taken in China’s seas were also implemented by using the algorithm PFSM, showing a 0.67 m STD of the SWH and a 2.21 s STD of the MWP compared with European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis grids wave data. The results indicate that the algorithm PFSM works for the wave retrieval from VV-polarization Sentinel-1 SAR image through SAR-derived wind speed by using the new GMF C-SARMOD.

Key words

wind speed significant wave height mean wave period Sentinel-1 synthetic aperture radar 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors appreciate the European Space Agency to provide freely accessible Sentinel-1 SAR images through The wind and wave measurements from in situ buoy were collected at ECMWF reanalysis wind and wave data were openly accessed from http://www. The views, opinions, and findings contained in this paper are those of the authors and should not be construed as an official NOAA or US Government position, policy or decision.


  1. Alpers W R, Bruning C. 1986. On the relative importance of motionrelated contributions to the SAR imaging mechanism of ocean surface waves. IEEE Transactions on Geoscience and Remote Sensing, GE-24(6): 873–885CrossRefGoogle Scholar
  2. Alpers W R, Ross D B, Rufenach C L. 1981. On the detectability of ocean surface waves by real and synthetic aperture radar. Journal of Geophysical Research, 86(C7): 6481–6498CrossRefGoogle Scholar
  3. Fernandez D E, Carswell J R, Frasier S, et al. 2006. Dual-polarized Cand Ku-band ocean backscatter response to hurricane-force winds. Journal of Geophysical Research, 111(C8): doi: 10.1029/2005JC003048Google Scholar
  4. Hasselmann S, Brüning C, Hasselmann K, et al. 1996. An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra. Journal of Geophysical Research, 101(C7): 16615–16629CrossRefGoogle Scholar
  5. Hasselmann S, Hasselmann K. 1985. Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum: I. a new method for efficient computations of the exact nonlinear transfer integral. Journal of Physical Oceanography, 15(11): 1369–1377CrossRefGoogle Scholar
  6. Hasselmann K, Hasselmann S. 1991. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion. Journal of Geophysical Research, 96(C6): 10713–10729CrossRefGoogle Scholar
  7. He Yijun, Shen Hui, Perrie W. 2006. Remote sensing of ocean waves by polarimetric SAR. Journal of Atmospheric and Oceanic Technology, 23(12): 1768–1773CrossRefGoogle Scholar
  8. Hersbach H. 2010. Comparison of C-band scatterometer CMOD5. N equivalent neutral winds with ECMWF. Journal of Atmospheric and Oceanic Technology, 27(4): 721–736CrossRefGoogle Scholar
  9. Hersbach H, Stoffelen A, Haan S D. 2007. An improved C-band scatterometer ocean geophysical model function: CMOD5. Journal of Geophysical Research, 112(C3): doi: 10.1029/2006JC003743Google Scholar
  10. Horstmann J, Koch W, Lehner S, et al. 2000. Wind retrieval over the ocean using synthetic aperture radar with C-band HH polarization. IEEE Transactions on Geoscience and Remote Sensing, 38(5): 2122–2131CrossRefGoogle Scholar
  11. Hwang P A, Fois F. 2015. Surface roughness and breaking wave properties retrieved from polarimetric microwave radar backscattering. Journal of Geophysical Research, 120(5): 3640–3657Google Scholar
  12. Lehner S, Horstmann J, Koch W, et al. 1998. Mesoscale wind measurements using recalibrated ERS SAR images. Journal of Geophysical Research, 103(C4): 7847–7856CrossRefGoogle Scholar
  13. Li Xiaoming, Lehner S, Bruns T. 2011. Ocean wave integral parameter measurements using envisat ASAR wave mode data. IEEE Transactions on Geoscience and Remote Sensing, 49(1): 155–174CrossRefGoogle Scholar
  14. Mastenbroek C, de Valk C F. 2000. A semiparametric algorithm to retrieve ocean wave spectra from synthetic aperture radar. Journal of Geophysical Research, 105(C2): 3497–3516CrossRefGoogle Scholar
  15. Meissner T, Wentz F J, Ricciardulli L. 2014. The emission and scattering of L-band microwave radiation from rough ocean surfaces and wind speed measurements from the Aquarius sensor. Journal of Geophysical Research, 119(9): 6499–6522Google Scholar
  16. Monaldo F M, Jackson C, Li Xiaofeng, et al. 2016. Preliminary evaluation of sentinel-1A wind speed retrievals. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(6): 2638–2642CrossRefGoogle Scholar
  17. Monaldo F M, Thompson D R, Beal R C, et al. 2001. Comparison of SAR-derived wind speed with model predictions and ocean buoy measurements. IEEE Transactions on Geoscience and Remote Sensing, 39(12): 2587–2600CrossRefGoogle Scholar
  18. Mouche A A, Chapron B. 2015. Global C-band envisat, RADARSAT-2 and sentinel-1 SAR measurements in copolarization and crosspolarization. Journal of Geophysical Research, 120(11): 7195–7207Google Scholar
  19. Mouche A A, Hauser D, Daloze J F, et al. 2005. Dual polarization measurements at C-band over the ocean: results from airborne radar observations and comparison with ENVISAT ASAR data. IEEE Transactions on Geoscience and Remote Sensing, 43(4): 753–769CrossRefGoogle Scholar
  20. Quilfen Y, Chapron B, Elfouhaily T, et al. 1998. Observation of tropical cyclones by high-resolution scatterometry. Journal of Geophysical Research, 103(C4): 7767–7786CrossRefGoogle Scholar
  21. Romeiser R, Graber H C, Caruso M J, et al. 2015. A new approach to ocean wave parameter estimates from C-band ScanSAR images. IEEE Transactions on Geoscience and Remote Sensing, 53(3): 1320–1345CrossRefGoogle Scholar
  22. Schuler D L, Lee J S, Kasilingam D, et al. 2004. Measurement of ocean surface slopes and wave spectra using polarimetric SAR image data. Remote Sensing of Environment, 91(2): 198–211CrossRefGoogle Scholar
  23. Schulz-Stellenfleth J, König T, Lehner S. 2007. An empirical approach for the retrieval of integral ocean wave parameters from synthetic aperture radar data. Journal of Geophysical Research, 112(C3): doi: 10.1029/2006JC003970Google Scholar
  24. Schulz-Stellenfleth J, Lehner S, Hoja D A. 2005. A parametric scheme for the retrieval of two-dimensional ocean wave spectra from synthetic aperture radar look cross spectra. Journal of Geophysical Research, 110(C5): doi: 10.1029/2004JC002822Google Scholar
  25. Shao Weizeng, Li Xiaoming, Lehner S, et al. 2014a. Development of polarization ratio model for sea surface wind field retrieval from TerraSAR-X HH polarization data. International Journal of Remote Sensing, 35(11): 4046–4063CrossRefGoogle Scholar
  26. Shao Weizeng, Li Xiaofeng, Sun Jian. 2015. Ocean wave parameters retrieval from TerraSAR-X images validated against buoy measurements and model results. Remote Sensing, 7(10): 12815–12828CrossRefGoogle Scholar
  27. Shao Weizeng, Sun Jian, Guan Changlong, et al. 2014b. A method for sea surface wind field retrieval from SAR image mode data. Journal of Ocean University of China, 13(2): 198–204CrossRefGoogle Scholar
  28. Stoffelen A, Anderson D. 1997. Scatterometer data interpretation: estimation and validation of the transfer function CMOD4. Journal of Geophysical Research, 102(C3): 5767–5780CrossRefGoogle Scholar
  29. Sun Jian, Guan Changlong. 2006. Parameterized first-guess spectrum method for retrieving directional spectrum of swell-dominanted waves and huge waves from SAR images. Chinese Journal of Oceanology and Limnology, 24(1): 12–20CrossRefGoogle Scholar
  30. Sun Jian, Kawamura H. 2009. Retrieval of surface wave parameters from SAR images and their validation in the coastal seas around Japan. Journal of Oceanography, 65(4): 567–577CrossRefGoogle Scholar
  31. The Wamdi Group. 1988. The WAM model-a third generation ocean wave prediction model. Journal of Physical Oceanography, 18(12): 1775–1810CrossRefGoogle Scholar
  32. Thompson D R, Elfouhaily T M, Chapron B. 1998. Polarization ratio for microwave backscattering from the ocean surface at low to moderate incidence angles. In: 1998 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Vol 3. Seattle, WA: IEEE, 1671–1673Google Scholar
  33. Vachon P W, Dobson F W. 2000. Wind retrieval from RADARSAT SAR images: selection of a suitable C-band HH polarization wind retrieval model. Canadian Journal of Remote Sensing, 26(4): 306–313CrossRefGoogle Scholar
  34. Valenzuela G R. 1978. Theories for the interaction of electromagnetic and oceanic waves-a review. Boundary-Layer Meteorology, 13(14): 61–85CrossRefGoogle Scholar
  35. Wackerman C C, Clemente-Colón P, Pichel W G, et al. 2002. A twoscale model to predict C-band VV and HH normalized radar cross section values over the ocean. Canadian Journal of Remote Sensing, 28(3): 367–384CrossRefGoogle Scholar
  36. Yang Xiaofeng, Li Xiaofeng, Zheng Quanan, et al. 2011. Comparison of ocean-surface winds retrieved from quikSCAT scatterometer and radarsat-1 SAR in offshore waters of the US west coast. IEEE Geoscience and Remote Sensing, 8(1): 163–167CrossRefGoogle Scholar
  37. Zhang Biao, Perrie W, He Yijun. 2010. Validation of RADARSAT-2 fully polarimetric SAR measurements of ocean surface waves. Journal of Geophysical Research, 115(C6): doi: 10.1029/2009JC005887Google Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Bo Lin
    • 1
  • Weizeng Shao
    • 1
  • Xiaofeng Li
    • 2
  • Huan Li
    • 3
  • Xiaoqing Du
    • 1
  • Qiyan Ji
    • 1
  • Lina Cai
    • 1
  1. 1.Marine Science and Technology CollegeZhejiang Ocean UniversityZhoushanChina
  2. 2.Global Science and TechnologyNational Oceanic and Atmospheric Administration (NOAA)-National Environmental Satellite, Data, and Information Service (NESDIS)College ParkUSA
  3. 3.National Marine Data and Information ServiceState Oceanic AdministrationTianjinChina

Personalised recommendations