Acta Oceanologica Sinica

, Volume 36, Issue 7, pp 4–14 | Cite as

Pacific-Indian interocean circulation of the Antarctic Intermediate Water around South Australia

  • Wenjun Yao
  • Jiuxin Shi


On the basis of the salinity distribution of isopycnal (σ 0=27.2 kg/m3) surface and in salinity minimum, the Antarctic Intermediate Water (AAIW) around South Australia can be classified into five types corresponding to five regions by using in situ CTD observations. Type 1 is the Tasman AAIW, which has consistent hydrographic properties in the South Coral Sea and the North Tasman Sea. Type 2 is the Southern Ocean (SO) AAIW, parallel to and extending from the Subantarctic Front with the freshest and coldest AAIW in the study area. Type 3 is a transition between Type 1 and Type 2. The AAIW transforms from fresh to saline with the latitude declining (equatorward). Type 4, the South Australia AAIW, has relatively uniform AAIW properties due to the semienclosed South Australia Basin. Type 5, the Southeast Indian AAIW, progressively becomes more saline through mixing with the subtropical Indian intermediate water from south to north. In addition to the above hydrographic analysis of AAIW, the newest trajectories of Argo (Array for real-time Geostrophic Oceanography) floats were used to constructed the intermediate (1 000 m water depth) current field, which show the major interocean circulation of AAIW in the study area. Finally, a refined schematic of intermediate circulation shows that several currents get together to complete the connection between the Pacific Ocean and the Indian Ocean. They include the South Equatorial Current and the East Australia Current in the Southwest Pacific Ocean, the Tasman Leakage and the Flinders Current in the South Australia Basin, and the extension of Flinders Current in the southeast Indian Ocean.

Key words

Antarctic Intermediate Water Pacific-Indian interocean circulation South Australia World Ocean Circulation Experiment Argo 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank all the people who have contribute their effort to obtain the data used here.


  1. Bostock H C, Sutton P J, Williams M J M, et al. 2013. Reviewing the circulation and mixing of Antarctic Intermediate Water in the South Pacific using evidence from geochemical tracers and Argo float trajectories. Deep-Sea Res: I, 73: 84–98, doi: 10.1016/j.dsr.2012.11.007CrossRefGoogle Scholar
  2. Cresswell G R, Peterson J L. 1993. The Leeuwin current south of Western Australia. Austr J Mar Freshw Res, 44(2): 285–303, doi: 10.1071/MF9930285cGoogle Scholar
  3. Davis R E. 2005. Intermediate-depth circulation of the Indian and South Pacific Oceans measured by autonomous floats. J Phys Oceanogr, 35(5): 683–707, doi: 10.1175/JPO2702.1CrossRefGoogle Scholar
  4. Davis R E, Sherman J T, Dufour J. 2001. Profiling ALACEs and other advances in autonomous subsurface floats. J Atmos Oceanic Technol, 18(6): 982–993, doi: 10.1175/1520-0426(2001)018<0982:PAAOAI>2.0.CO;2CrossRefGoogle Scholar
  5. Donners J, Drijfhout S S. 2004. The Lagrangian view of South Atlantic interocean exchange in a global ocean model compared with inverse model results. J Phys Oceanogr, 34(5): 1019–1035, doi: 10.1175/1520-0485(2004)034<1019:TLVOSA>2.0.CO;2CrossRefGoogle Scholar
  6. Dunn J R, Ridgway K R. 2002. Mapping ocean properties in regions of complex topography. Deep-Sea Res: I, 49(3): 591–604, doi: 10.1016/S0967-0637(01)00069-3CrossRefGoogle Scholar
  7. Fieux M, Molcard R, Morrow R. 2005. Water properties and transport of the Leeuwin Current and eddies off Western Australia. Deep- Sea Res: I, 52(9): 1617–1635, doi: 10.1016/j.dsr.2005.03.013CrossRefGoogle Scholar
  8. Fine R A. 1993. Circulation of Antarctic intermediate water in the South Indian Ocean. Deep-Sea Res: I, 40(10): 2021–2042, doi: 10.1016/0967-0637(93)90043-3CrossRefGoogle Scholar
  9. Fine R A, Smethie W M Jr, Bullister J L, et al. 2008. Decadal ventilation and mixing of Indian Ocean waters. Deep-Sea Res: I, 55(1): 20–37, doi: 10.1016/j.dsr.2007.10.002CrossRefGoogle Scholar
  10. Ganachaud A, Cravatte S, Melet A, et al. 2014. The Southwest Pacific Ocean circulation and climate experiment (SPICE). J Geophys Res, 119(11): 7660–7686, doi: 10.1002/2013JC009678CrossRefGoogle Scholar
  11. Garcia H E, Locarnini R A, Boyer T P, et al. 2006. World Ocean Atlas 2005 volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. In: Levitus S, ed. NOAA Atlas NESDIS 63. Washington, DC: US Government Printing Office, 324Google Scholar
  12. Godfrey J, Ridgway K R. 1985. The large-scale environment of the poleward-flowing Leeuwin Current, Western Australia: longshore steric height gradients, wind stresses and geostrophic flow. J Phys Oceanogr, 15(5): 481–495CrossRefGoogle Scholar
  13. Hamilton L J. 2006. Structure of the subtropical front in the Tasman Sea. Deep-Sea Res: I, 53(12): 1989–2009, doi: 10.1016/j.dsr. 2006.08.013CrossRefGoogle Scholar
  14. Hu Dunxin, Wu Lixin, Cai Wenju, et al. 2015. Pacific western boundary currents and their roles in climate. Nature, 522(7556): 299–308, doi: 10.1038/nature14504CrossRefGoogle Scholar
  15. Katsumata K, Yoshinari H. 2010. Uncertainties in global mapping of Argo drift data at the parking level. J Oceanogr, 66(4): 553–569, doi: 10.1007/s10872-010-0046-4CrossRefGoogle Scholar
  16. Lebedev K V, Yoshinari H, Maximenko N A, et al. 2007. Yo Ma Ha’07: velocity data assessed from trajectories of Argo floats at parking level and at the sea surface. IPRC Technical Note, 4(2): 1–16Google Scholar
  17. McCarthy G, McDonagh E, King B. 2011. Decadal variability of thermocline and intermediate waters at 24°S in the South Atlantic. J Phys Oceanogr, 41(1): 157–165, doi: 10.1175/2010JPO4467.1CrossRefGoogle Scholar
  18. McCarthy M C, Talley L D. 1999. Three-dimensional isoneutral potential vorticity structure in the Indian Ocean. J Geophys Res, 104(C6): 13251–13267 doi: 10.1029/1999JC900028CrossRefGoogle Scholar
  19. Middleton J F, Bye J A T. 2007. A review of the shelf-slope circulation along Australia’s southern shelves: cape Leeuwin to Portland. Prog Oceanogr, 75(1): 1–41, doi: 10.1016/j.pocean.2007.07.001CrossRefGoogle Scholar
  20. Middleton J F, Cirano M. 2002. A northern boundary current along Australia’s southern shelves: the flinders current. J Geophys Res, 107(C9): doi: 10.1029/2000JC000701CrossRefGoogle Scholar
  21. Molinelli E J. 1981. The Antarctic influence on Antarctic intermediate water. J Mar Res, 39(2): 267–293Google Scholar
  22. Mulhearn P J. 1987. The Tasman Front: a study using satellite infrared imagery. J Phys Oceanogr, 17(8): 1148–1155, doi: 10.1175/1520-0485(1987)017<1148:TTFASU>2.0.CO;2CrossRefGoogle Scholar
  23. Orsi A H, Whitworth III T, Nowlin W D Jr. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res: I, 42(5): 641–673, doi: 10.1016/0967-0637(95)00021-WCrossRefGoogle Scholar
  24. Park J J, Kim K, King B A, et al. 2005. An advanced method to estimate deep currents from profiling floats. J Atmos Oceanic Technol, 22(8): 1294–1304, doi: 10.1175/JTECH1748.1CrossRefGoogle Scholar
  25. Piola A R, Georgi D T. 1982. Circumpolar properties of Antarctic Intermediate Water and Subantarctic Mode Water. Deep-Sea Res: A, 29(6): 687–711, doi: 10.1016/0198-0149(82)90002-4CrossRefGoogle Scholar
  26. Reid J L. 1989. On the total geostrophic circulation of the South Atlantic Ocean: flow patterns, tracers, and transports. Prog Oceanogr, 23(3): 149–244, doi: 10.1016/0079-6611(89)90001-3CrossRefGoogle Scholar
  27. Ridgway K R, Condie S A. 2004. The 5500-km-long boundary flow off western and southern Australia. J Geophys Res, 109(C4): doi: 10.1029/2003jc001921CrossRefGoogle Scholar
  28. Ridgway K R, Dunn J R. 2003. Mesoscale structure of the mean East Australian Current system and its relationship with topography. Prog Oceanogr, 56(2): 189–222, doi: 10.1016/S0079-6611(03)00004-1CrossRefGoogle Scholar
  29. Ridgway K R, Dunn J R. 2007. Observational evidence for a Southern Hemisphere oceanic supergyre. Geophys Res Lett, 34(13): L13612 doi: 10.1029/2007gl030392Google Scholar
  30. Rintoul S R, Bullister J L. 1999. A late winter hydrographic section from Tasmania to Antarctica. Deep-Sea Res: I, 46(8): 1417–1454, doi: 10.1016/S0967-0637(99)00013-8CrossRefGoogle Scholar
  31. Rintoul S R, Sokolov S. 2001. Baroclinic transport variability of the Antarctic Circumpolar Current south of Australia (WOCE repeat section SR3). J Geophys Res, 106(C2): 2815–2832 doi: 10.1029/2000JC900107CrossRefGoogle Scholar
  32. Roemmich D, Church J, Gilson J, et al. 2015. Unabated planetary warming and its ocean structure since 2006. Nat Climate Change, 5(3): 240–245, doi: 10.1038/nclimate2513CrossRefGoogle Scholar
  33. Rosell-Fieschi M, Rintoul S R, Gourrion J, et al. 2013. Tasman Leakage of intermediate waters as inferred from Argo floats. Geophys Res Lett, 40(20): 5456–5460, doi: 10.1002/2013GL057797CrossRefGoogle Scholar
  34. Schodlok M P, Tomczak M. 1997. The circulation south of Australia derived from an inverse model. Geophys Res Lett, 24(22): 2781–2784, doi: 10.1029/97GL02576CrossRefGoogle Scholar
  35. Sloyan B M, Rintoul S R. 2001. Circulation, renewal, and modification of Antarctic mode and intermediate water. J Phys Oceanogr, 31(4): 1005–1030, doi: 10.1175/1520-0485(2001)031 <1005:CRAMOA>2.0.CO;2CrossRefGoogle Scholar
  36. Sokolov S, Rintoul S. 2000. Circulation and water masses of the southwest Pacific: WOCE section P11, Papua New Guinea to Tasmania. J Mar Res, 58(2): 223–268, doi: 10.1357/002224000321511151CrossRefGoogle Scholar
  37. Speich S, Blanke B, Cai Wenju. 2007. Atlantic meridional overturning circulation and the Southern Hemisphere supergyre. Geophys Res Lett, 34(23): L23614 doi: 10.1029/2007GL031583CrossRefGoogle Scholar
  38. Speich S, Blanke B, de Vries P, et al. 2002. Tasman leakage: a new route in the global ocean conveyor belt. Geophys Res Lett, 29(10): 1416, doi: 10.1029/2001gl014586CrossRefGoogle Scholar
  39. Stanton B R, Ridgway N. 1988. An oceanographic survey of the subtropical convergence zone in the Tasman Sea. New Zealand Journal of Marine and Freshwater Research, 22(4): 583–593, doi: 10.1080/00288330.1988.9516328CrossRefGoogle Scholar
  40. Stramma L, Peterson R G, Tomczak M. 1995. The south Pacific current. J Phys Oceanogr, 25(1): 77–91, doi: 10.1175/1520-0485(1995)025<0077:TSPC>2.0.CO;2CrossRefGoogle Scholar
  41. Talley L D. 1996. Antarctic Intermediate Water in the South Atlantic. In: Wefer G, Berger W H, Siedler G, et al. The South Atlantic: Present and Past Circulation. Berlin: Springer Berlin Heidelberg, 219–238CrossRefGoogle Scholar
  42. Talley L D. 2013. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography, 26(1): 80–97, doi: 10.5670/oceanog.2013.07CrossRefGoogle Scholar
  43. Thompson R O R Y. 1984. Observations of the Leeuwin current off Western Australia. J Phys Oceanogr, 14(3): 623–628, doi: 10.1175/1520-0485(1984)014;0623:OOTLCO>2.0.CO;2CrossRefGoogle Scholar
  44. Tomczak M, Godfrey J S. 1994. Regional Oceanography: An Introduction. Oxford: Pergamon Press, 422Google Scholar
  45. Weijer W, Sloyan B M, Maltrud M E, et al. 2012. The southern ocean and its climate in CCSM4. J Climate, 25(8): 2652–2675, doi: 10.1175/JCLI-D-11-00302.1CrossRefGoogle Scholar
  46. Wong A P S. 2005. Subantarctic mode water and Antarctic Intermediate Water in the south Indian Ocean based on profiling float data 2000–2004. J Mar Res, 63(4): 789–812, doi: 10.1357/0022240054663196CrossRefGoogle Scholar
  47. Woo M, Pattiaratchi C. 2008. Hydrography and water masses off the western Australian coast. Deep-Sea Res: I, 55(9): 1090–1104, doi: 10.1016/j.dsr.2008.05.005CrossRefGoogle Scholar
  48. Wyrtki K. 1962. The subsurface water masses in the Western South Pacific Ocean. Australian Journal of Marine and Freshwater Research, 13(1): 18–47, doi: 10.1071/MF9620018CrossRefGoogle Scholar
  49. You Y Z. 1998. Intermediate water circulation and ventilation of the Indian Ocean derived from water-mass contributions. J Mar Res, 56(5): 1029–1067, doi: 10.1357/002224098765173455CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Key Laboratory of Physical OceanographyOcean University of ChinaQingdaoChina

Personalised recommendations