Acta Oceanologica Sinica

, Volume 36, Issue 3, pp 20–25 | Cite as

An evaluation of input/dissipation terms in WAVEWATCH III using in situ and satellite significant wave height data in the South China Sea

  • Jichao Wang
  • Jie Zhang
  • Jungang Yang
  • Wendi Bao
  • Guoli Wu
  • Qifeng Ren
Article

Abstract

A WAVEWATCH III version 3.14 (WW3) wave model is used to evaluate input/dissipation source term packages WAM3, WAM4 and TC96 considering the effect of atmospheric instability. The comparisons of a significant wave height acquired from the model with different packages have been performed based on wave observation radar and HY-2 altimetry significant wave height data through five experiments in the South China Sea domain spanning latitudes of 0°–35°N and longitudes of 100°–135°E. The sensitivity of the wind speed correction parameter in the TC96 package also has been analyzed. From the results, the model is unable to dissipate the wave energy efficiently during a swell propagation with either source packages. It is found that TC96 formulation with the “effective wind speed” strategy performs better than WAM3 and WAM4 formulations. The wind speed correction parameter in the TC96 source package is very sensitive and needs to be calibrated and selected before the WW3 model can be applied to a specific region.

Key words

input/dissipation terms atmospheric instability WAVEWATCH III South China Sea wind speed correction parameter significant wave height 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank the NOAA for providing bathymetry data, thank the NSOAS for providing HY-2 altimeter data.

References

  1. Abdalla S, Bidlot J R. 2002. Wind Gustiness and Air Density Effects and Other Key Changes to Wave Model in CY25R1. ECMWF Research Department Technical Report Memorandum R60.9/SA/0273. England: European Centre for Medium-Range Weather ForecastsGoogle Scholar
  2. Bidlot J R, Abdalla S, Janssen P. 2005. A revised formulation for ocean wave dissipation in CY25R1. ECMWF Research Department Technical Report Memorandum R60.9/JB/0516. England: European Centre for Medium-Range Weather ForecastsGoogle Scholar
  3. Chalikov D V. 1995. The parameterization of the wave boundary layer. Journal of Physical Oceanography, 25(6): 1333–1349CrossRefGoogle Scholar
  4. Chalikov D V, Belevich M Y. 1993. One-dimensional theory of the wave boundary layer. Boundary-Layer Meteorology, 63(1–2): 65–96CrossRefGoogle Scholar
  5. Chu P C, Cheng Kuofeng. 2008. South China Sea wave characteristics during typhoon Muifa passage in winter 2004. Journal of Oceanography, 64(1): 1–21CrossRefGoogle Scholar
  6. Durrant T H, Greenslade D J M, Simmonds I. 2009. Validation of Jason-1 and Envisat remotely sensed wave heights. Journal of Atmospheric and Oceanic Technology, 26(1): 123–134CrossRefGoogle Scholar
  7. Janssen P A E M. 1991. Quasi-linear theory of wind-wave generation applied to wave forecasting. Journal of Physical Oceanography, 21(11): 1631–1642CrossRefGoogle Scholar
  8. Kalantzi G D, Gommenginger C, Srokosz M. 2009. Assessing the performance of the dissipation parameterizations in WAVEWATCH III using collocated altimetry data. Journal of Physical Oceanography, 39(11): 2800–2819CrossRefGoogle Scholar
  9. Komen G J, Hasselmann S, Hasselmann K. 1984. On the existence of a fully developed wind-sea spectrum. Journal of Physical Oceanography, 14(8): 1271–1285CrossRefGoogle Scholar
  10. Lee B C, Fan Y M, Chuang L Z H, et al. 2009. Parametric sensitivity analysis of the WAVEWATCH III model. Terrestrial, Atmospheric and Oceanic Sciences, 20(2): 425–432CrossRefGoogle Scholar
  11. Snyder R L, Dobson F W, Elliott J A, et al. 1981. Array measurements of atmospheric pressure fluctuations above surface gravity waves. Journal of Fluid Mechanics, 102: 1–59CrossRefGoogle Scholar
  12. The WAMDI Group. 1988. The WAM model—A third generation ocean wave prediction model. Journal of Physical Oceanography, 18(12): 1775–1810CrossRefGoogle Scholar
  13. The WISE Group. 2007. Wave modelling: the state of the art. Progress in Oceanography, 75(4): 603–674CrossRefGoogle Scholar
  14. Tolman H L. 2002. Validation of WAVEWATCH III Version 1.15 for a Global Domain. NCEP Technical Note 213. Camp Springs, US: National Oceanic and Atmospheric AdministrationGoogle Scholar
  15. Tolman H L. 2009. User Manual and System Documentation of WAVEWATCH IIITM Version 3.14. Technical Note 276. Camp Springs, US: National Oceanic and Atmospheric AdministrationGoogle Scholar
  16. Tolman H L, Chalikov D. 1996. Source terms in a third-generation wind wave model. Journal of Physical Oceanography, 26(11): 2497–2518CrossRefGoogle Scholar
  17. Tolman H L, the WAVEWATCH III Development Group. 2014. User Manual and System Documentation of WAVEWATCH III® Version 4.18. Technical Note 316. Camp Springs, US: National Oceanic and Atmospheric AdministrationGoogle Scholar
  18. Törn A, Žilinskas A. 1989. Global Optimization. New York: Springer-Verlag, 255CrossRefGoogle Scholar
  19. Wang Jichao, Zhang Jie, Yang Jungang. 2013. The validation of HY-2 altimeter measurements of a significant wave height based on buoy data. Acta Oceanologica Sinica, 32(11): 87–90CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jichao Wang
    • 1
  • Jie Zhang
    • 2
  • Jungang Yang
    • 2
  • Wendi Bao
    • 1
  • Guoli Wu
    • 1
  • Qifeng Ren
    • 3
  1. 1.College of ScienceChina University of PetroleumQingdaoChina
  2. 2.The First Institute of OceanographyState Oceanic AdministrationQingdaoChina
  3. 3.School of Mathematical SciencesOcean University of ChinaQingdaoChina

Personalised recommendations