Advertisement

Acta Oceanologica Sinica

, Volume 35, Issue 5, pp 24–37 | Cite as

Interdecadal change of winter SST variability in the Kuroshio Extension region and its linkage with Aleutian atmospheric low pressure system

  • Peilong Yu
  • Lifeng Zhang
  • Yongchui Zhang
  • Bing Deng
Article

Abstract

By utilizing multiple datasets from various sources available for the last 100 years, the existence for the interdecadal change of the winter sea surface temperature (SST) variability in the Kuroshio Extension (KE) region is investigated. And its linkage with the Aleutian Low (AL) activity changes is also discussed. The results find that the KE SST variability exhibits the significant ∼6 a and ∼10 a oscillations with obvious interdecadal change. The ∼6 a oscillation is mainly detected during 1930–1950, which is largely impacted by the anomalous surface heat flux forcing and Ekman heat transport associated with the AL intensity variation. The ∼10 a oscillation is most evident after the 1980s, which is predominantly triggered by the AL north-south shift through the bridge of oceanic Rossby waves.

Keywords

sea surface temperature (SST) variability interdecadal change Kuroshio Extension Aleutain Low 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An S I. 2003. Conditional maximum covariance analysis and its application to the tropical Indian Ocean SST and surface wind stress anomalies. J Climate, 16(17): 2932–2938CrossRefGoogle Scholar
  2. Bond N A, Overland J E, Spillane M, et al. 2003. Recent shifts in the state of the North Pacific. Geophys Res Lett, 30(23): 2183, doi: 10.1029/2003GL018597Google Scholar
  3. Bretherton C S, Widman M, Dymnikov V P, et al. 1999. The effective number of spatial degrees of freedom of a time-varying field. J Climate, 12(7): 1990–2009CrossRefGoogle Scholar
  4. Brohan P, Kennedy J J, Harris I, et al. 2006. Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J Geosphys Res, 111(D12): D12106, doi: 10.1029/2005JD006548CrossRefGoogle Scholar
  5. Carton J A, Giese B S. 2008. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Wea Rev, 136(8): 2999–3017CrossRefGoogle Scholar
  6. Ciasto L M, England M H. 2011. Observed ENSO teleconnections to Southern Ocean SST anomalies diagnosed from a surface mixed layer heat budget. Geophys Res Lett, 38(9): L09701, doi: 10.1029/2011GL046895Google Scholar
  7. Compo G P, Whitaker J S, Sardeshmukh P D, et al. 2011. The twentieth century reanalysis project. Quart J Roy Meteor Soc, 137(654): 1–28CrossRefGoogle Scholar
  8. Deser C, Phillips A S. 2006. Simulation of the 1976/77 climate transition over the North Pacific: Sensitivity to tropical forcing. J Climate, 19(23): 6170–6180CrossRefGoogle Scholar
  9. Deser C, Phillips A S, Alexander M A. 2010. Twentieth century tropical sea surface temperature trends revisited. Geophys Res Lett, 37(10): L10701, doi: 10.1029/2010GL043321Google Scholar
  10. Ding Ruiqiang, Li Jianping, Tseng Y H, et al. 2015. The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. J Geophys Res, 120(1): 27–45Google Scholar
  11. Giese B S, Ray S. 2011. El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J Geophys Res, 116(C2): C02024, doi: 10.1029/2010JC006695CrossRefGoogle Scholar
  12. Graham N E. 1994. Decadal scale climate variability in the tropical and North Pacific during the 1970s and 1980s: Observations and model results. Climate Dyn, 10(3): 135–162CrossRefGoogle Scholar
  13. Grinsted A, Moore J C, Jevrejeva S. 2004. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11(5–6): 561–566CrossRefGoogle Scholar
  14. Hanawa K, Yoshikawa Y, Watanabe T. 1989. Composite analyses of wintertime wind stress vector fields with respect to SST anomalies in the western North Pacific and the ENSO events: Part II. ENSO composite. J Meteor Soc Japan, 67(5): 835–845Google Scholar
  15. Ishi Y, Hanawa K. 2005. Large-scale variabilities of wintertime wind stress curl field in the North Pacific and their relation to atmospheric teleconnection patterns. Geophys Res Lett, 32(10): L10607, doi: 10.1029/2004GL022330CrossRefGoogle Scholar
  16. Jin Qihua, Wang Hui. 2011. Multitime scale variations of sea surface temperature in the China seas based on the HadISST dataset. Acta Oceanologica Sinica, 30(4): 14–23CrossRefGoogle Scholar
  17. Kaplan A, Cane M A, Kushnir Y, et al. 1998. Analyses of global sea surface temperature 1856–1991. J Geophys Res, 103(C9): 18567–18589CrossRefGoogle Scholar
  18. Kelly K A, Small R J, Samelson R M, et al. 2010. Western boundary currents and frontal air–sea interaction: Gulf Stream and Kuroshio Extension. J Climate, 23(21): 5644–5667CrossRefGoogle Scholar
  19. Kennedy J J, Rayner N A, Smith R O, et al. 2011a. Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties. J Geophys Res, 116(D14): D14103, doi: 10.1029/2010JD015218CrossRefGoogle Scholar
  20. Kennedy J J, Rayner N A, Smith R O, et al. 2011b. Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J Geophys Res, 116(D14): D14104, doi: 10.1029/2010JD015220CrossRefGoogle Scholar
  21. Kwon Y O, Deser C. 2007. North Pacific decadal variability in the Community Climate System Model version 2. J Climate, 20(11): 2416–2433CrossRefGoogle Scholar
  22. Latif M, Barnett T P. 1994. Causes of decadal climate variability over the North Pacific and North America. Science, 266(5185): 634–637CrossRefGoogle Scholar
  23. Latif M, Barnett T P. 1996. Decadal climate variability over the North Pacific and North America: Dynamics and predictability. J Climate, 9(10): 2407–2423CrossRefGoogle Scholar
  24. Li Jianping, Sun Cheng, Jin Feifei. 2013. NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys Res Lett, 40(20): 5497–5502CrossRefGoogle Scholar
  25. Liu Qinyu, Wen Na, Yu Yongqiang. 2006. The role of the Kuroshio in the winter North Pacific ocean-atmospheric interaction: comparison of a coupled model and observations. Adv Atmos Sci, 23(2): 181–189CrossRefGoogle Scholar
  26. Mantua N J, Hare S R, Zhang Yuan, et al. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Amer Meteor Soc, 78(6): 1069–1079CrossRefGoogle Scholar
  27. Miller A J, Cayan D R, Barnett T P, et al. 1994. The 1976–77 climate shift of the Pacific Ocean. Oceanography, 7(1): 21–26CrossRefGoogle Scholar
  28. Minobe S, Maeda A. 2005. A 1° monthly gridded sea-surface temperature dataset compiled from ICOADS from 1850 to 2002 and Northern Hemisphere frontal variability. Int J Climatol, 25(7): 881–994CrossRefGoogle Scholar
  29. Overland J E, Adams J M, Bond N A. 1999. Decadal variability of the Aleutian Low and its relation to high-latitude circulation. J Climate, 12(5): 1542–1548CrossRefGoogle Scholar
  30. Peng Shiling, Whitaker J S. 1999. Mechanisms determining the atmospheric response to midlatitude SST anomalies. J Climate, 12(5): 1393–1408CrossRefGoogle Scholar
  31. Qiu Bo. 2000. Interannual variability of the Kuroshio Extension system and its impact on the wintertime SST field. J Phys Oceanogr, 30(6): 1486–1502CrossRefGoogle Scholar
  32. Qiu Bo. 2003. Kuroshio Extension variability and forcing of the Pacific decadal oscillations: Responses and potential feedback. J Phys Oceanogr, 33(12): 2465–2482CrossRefGoogle Scholar
  33. Qiu Bo, Chen Shuiming. 2005. Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J Phys Oceanogr, 35(11): 2090–2103CrossRefGoogle Scholar
  34. Qiu Bo, Chen Shuiming. 2010. Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deep Sea Research, 57(13–14): 1098–1110CrossRefGoogle Scholar
  35. Qiu Bo, Schneider N, Chen Shuiming. 2007. Coupled decadal variability in the North Pacific: An observationally constrained idealized model. J Climate, 20(14): 3602–3620CrossRefGoogle Scholar
  36. Rayner N A, Brohan P, Parker D E, et al. 2006. Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J Climate, 19(3): 446–469CrossRefGoogle Scholar
  37. Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108(D14): 4407, doi: 10.1029/2002JD002670CrossRefGoogle Scholar
  38. Schneider N, Cornuelle B D. 2005. The forcing of the Pacific decadal oscillation. J Climate, 18(21): 4355–4373CrossRefGoogle Scholar
  39. Seo Y, Sugimoto S, Hanawa K. 2014. Long-term variations of the Kuroshio Extension path in winter: Meridional movement and path state change. J Climate, 27(15): 5929–5940CrossRefGoogle Scholar
  40. Smith T M, Reynolds R W, Peterson T C, et al. 2008. Improvements to NOAA's historical merged land-ocean surface temperature analysis (1880–2006). J Climate, 21(10): 2283–2296CrossRefGoogle Scholar
  41. Sugimoto S, Hanawa K. 2009. Decadal and interdecadal variations of the Aleutian low activity and their relation to upper oceanic variations over the North Pacific. J Meteor Soc Japan, 87(4): 601–614CrossRefGoogle Scholar
  42. Tanimoto Y, Nakamura H, Kagimoto T, et al. 2003. An active role of extratropical sea surface temperature anomalies in determining anomalous turbulent heat flux. J Geophys Resh, 108(C10): 3304, doi: 10.1029/2002JC001750CrossRefGoogle Scholar
  43. Torrence C, Compo G P. 1998. A practical guide to wavelet analysis. Bull Amer Meteor Soc, 79(1): 61–78CrossRefGoogle Scholar
  44. Trenberth K E. 1984. Some effects of finite sample size and persistence on meteorological statistics. Part I: autocorrelations. Mon Wea Rev, 112(12): 2359–2368CrossRefGoogle Scholar
  45. Trenberth K E. Hurrell J W. 1994. Decadal atmosphere–ocean variations in the Pacific. Climate Dyn, 9(6): 303–319CrossRefGoogle Scholar
  46. Trenberth K E. 1990. Recent observed interdecadal climate changes in the Northern Hemisphere. Bull Amer Meteor Soc, 71(7): 988–993CrossRefGoogle Scholar
  47. Vivier F, Kelly E A, Thompson L. 2002. Heat budget in the Kuroshio Extension region: 1993–1999. J Phys Oceanogr, 32(12): 3436–3454CrossRefGoogle Scholar
  48. Wang Shanshan, Guan Yuping, Li Zhijin, et al. 2012. Preliminary analyses on characteristics of sea surface temperatures in Kuroshio and its extension and relations to atmospheric circulations. Acta Physica Sinica (in Chinese), 61(16): 169201Google Scholar
  49. Wang Shanshan, Guan Yuping, Li Zhijin, et al. 2015. Variable characteristics of the wintertime net heat flux along the Kuroshio system and its association with climate in China. Int J Climatol, 35(6): 1180–1191CrossRefGoogle Scholar
  50. Wang Panxing, Lu Chuhan, Guan Zhaoyong, et al. 2007. Definition and calculation of three circulation indices for closed pressure systems. Journal of Nanjing Institute of Meteorology (in Chinese), 30(6): 730–735.Google Scholar
  51. Wu Lixin, Cai Wenju, Zhang Liping, et al. 2012. Enhanced warming over the global subtropical western boundary currents. Nature Climate Change, 2(3): 161–166CrossRefGoogle Scholar
  52. Zhang Jinting, Liu Qinyu, Wu Shu. 2010. The analysis of interannual and interdecadal characteristics of global sea surface temperature during 1902–2003. Haiyang Xuebao (in Chinese), 32(4): 24–31Google Scholar
  53. Zhang Yuan, Wallace J M, Iwasaka N. 1996. Is climate variability over the North Pacific a linear response to ENSO?. J Climate, 9(7): 1468–1478CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Peilong Yu
    • 1
  • Lifeng Zhang
    • 1
  • Yongchui Zhang
    • 1
  • Bing Deng
    • 2
  1. 1.College of Meteorology and OceanographyPLA University of Science and TechnologyNanjingChina
  2. 2.Beijing Institute of Applied MeteorologyBeijingChina

Personalised recommendations