Advertisement

Acta Oceanologica Sinica

, Volume 35, Issue 4, pp 89–98 | Cite as

Is maturity index an efficient tool to assess the effects of the physical disturbance on the marine nematode assemblages?—A critical interpretation of disturbance-induced maturity successions in some study cases in Maldives

  • F. SemprucciEmail author
  • P. Colantoni
  • M. Balsamo
Article

Abstract

Maturity index (MI), based on nematode life strategies, has been proposed in 1990 to assess the possible variations of the terrestrial and freshwater nematode assemblages induced by anthropogenic activities. It was subsequently applied also to marine ecosystems and, even if comparatively not yet very popular, it offers a good method to assess the ecological quality in relation to a wide range of anthropogenic drivers. However, few data are available on its response to physical stress, a key factor especially in the coastal areas. In this study, marine nematode genera from two study cases carried out in Maldives are used to test both MI and life strategy traits (i.e., c-p classes) for detecting the effects of physical disturbance. The results confirm that nematodes are well adapted to physical stress showing a general high rate of recovery. C-p scaling and MI did not seem to be appropriate for revealing this disturbance type probably because there are no empirical evidences on the life strategy of several genera, and a possible differential response to various disturbance types may be hypothesized.

Keywords

marine nematodes bioindicators maturity index hydrodynamism tsunami Maldives 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altaff K, Sugumaran J, Naveed M S. 2005. Impact of tsunami on meiofauna of Marina beach, Chennai, India. Curr Sci, 89(1): 34–38Google Scholar
  2. Balsamo M, Albertelli G, Ceccherelli V U, et al. 2010. Meiofauna of the Adriatic Sea: current state of knowledge and future perspectives. Chem Ecol, 26(1): 45–63CrossRefGoogle Scholar
  3. Balsamo M, Semprucci F, Frontalini F, et al. 2012. Chapter 4: Meiofauna as a tool for marine ecosystem biomonitoring. In: Cruzado A, ed. Marine Ecosystems. Rijeka: InTech Publisher, 77–104Google Scholar
  4. Bongers T. 1990. The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83(1): 14–19CrossRefGoogle Scholar
  5. Bongers T, Alkemade R, Yeates G W. 1991. Interpretation of disturbanceinduced maturity decrease in marine nematode assemblages by means of the Maturity Index. Mar Ecol Prog Ser, 76(2): 135–142CrossRefGoogle Scholar
  6. Bongers T, Ferris H. 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution, 14(6): 224–228CrossRefGoogle Scholar
  7. Boufahja F, Semprucci F. 2015. Stress-induced selection of a single species from an entire meiobenthic nematode assemblage: is this possible using iron enrichment and does pre-exposure affect the ease of the process?. Environ Sci Pollut Res, 22(3): 1979–1998CrossRefGoogle Scholar
  8. Buchanan J B. 1984. Sediment analysis. In: Holme N A, McIntyre A D, eds. Methods for the Study of Marine Benthos. 2nd ed. Oxford Boston: Blackwell Scientific Publications, 41–65Google Scholar
  9. Clarke K R, Gorley R N. 2001. PRIMER v5: User Manual/Tutorial. Plymouth Marine Laboratory. Plymouth, UK: Primer-E LimitedGoogle Scholar
  10. Clarke K R, Warwick R M. 2001. Change in marine communities: an approach to statistical analysis and interpretation. 2nd ed. Plymouth Marine Laboratory, Plymouth, UK: Primer-E LimitedGoogle Scholar
  11. Essink K, Keidel H. 1998. Changes in estuarine nematode communities following a decrease of organic pollution. Aquat Ecol, 32(3): 195–202CrossRefGoogle Scholar
  12. Folk L R, Ward W C. 1957. Brazos river bar [Texas]; a study in the significance of grain size parameters. J Sediment Res, 27(1): 3–26CrossRefGoogle Scholar
  13. Fonsêca-Genevois V, Somerfield P J, Neves M H B, et al. 2006. Colonization and early succession on artificial hard substrata by meiofauna. Mar Biol, 148(5): 1039–1050CrossRefGoogle Scholar
  14. Fraschetti S, Gambi C, Giangrande A, et al. 2006. Structural and functional response of meiofauna rocky assemblages to sewage pollution. Mar Pollut Bull, 52(5): 540–548CrossRefGoogle Scholar
  15. Gingold R, Ibarra-Obando S E, Rocha-Olivares A. 2011. Spatial aggregation patterns of free-living marine nematodes in contrasting sandy beach micro-habitats. J Mar Biol Assoc UK, 91(3): 615–622CrossRefGoogle Scholar
  16. Grzelak K, Kotwicki L, Szczucinski W. 2009. Monitoring of sandy beach meiofaunal assemblages and sediments after the 2004 tsunami in Thailand. Pol J Environ St, 18(1): 43–51Google Scholar
  17. Grzelak K, Szczucinski W, Kotwicki L, et al. 2014. Ecological status of sandy beaches after tsunami events: insights from meiofauna investigations after the 2011 Tohoku-oki Tsunami, Sendai Bay, Japan. In: Kontar Y A, Santiago-Fandiño V, Takahashi T, eds. Tsunami Events and Lessons Learned-Environmental and Societal Significance. Advances in Natural and Technological Hazards Research. Netherlands: Springer, 177–191Google Scholar
  18. Kench P S, Brander R W, Parnell K E, et al. 2006. Wave energy gradients across a Maldivian atoll: implications for island geomorphology. Geomorphology, 81(1–2): 1–17CrossRefGoogle Scholar
  19. Kendall M A, Aryuthaka C, Chimonides J, et al. 2009. Post-tsunami recovery of shallow water biota and habitats on Thailand’s Andaman coast. Pol J Environ St, 18(1): 69–75Google Scholar
  20. Kotwicki L, Szczucinski W. 2006. Meiofauna assemblages and sediment characteristic of sandy beaches on the west coast of Thailand after the 2004 tsunami event. Phuket Mar Biol Cent Res Bull, 67: 39–47Google Scholar
  21. Lee H J, Vanhove S, Peck L S, et al. 2001. Recolonisation of meiofauna after catastrophic iceberg scouring in shallow Antarctic sediments. Polar Biol, 24(12): 918–925CrossRefGoogle Scholar
  22. Losi V, Montefalcone M, Moreno M, et al. 2012. Nematodes as indicators of environmental quality in seagrass (Posidonia oceanica) meadows of the NW Mediterranean Sea. Adv Oceanogra Limnol, 3(1): 69–91CrossRefGoogle Scholar
  23. Mirto S, La Rosa T, Gambi C, et al. 2002. Nematode community response to fish-farm impact in the western Mediterranean. Environ Pollut, 116(2): 203–214CrossRefGoogle Scholar
  24. Moreno M, Semprucci F, Vezzulli L, et al. 2011. The use of nematodes in assessing ecological quality status in the Mediterranean coastal ecosystems. Ecol Indic, 11(2): 328–336CrossRefGoogle Scholar
  25. Moreno M, Vezzulli L, Marin V, et al. 2008. The use of meiofauna diversity as an indicator of pollution in harbours. ICES J Mar Sci, 65(8): 1428–1435CrossRefGoogle Scholar
  26. Netto S A, Attrill M J, Warwick R M. 1999. The effect of a natural watermovement related disturbance on the structure of meiofauna and macrofauna communities in the intertidal sand flat of Rocas Atoll (NE, Brazil). J Sea Res, 42(4): 291–302CrossRefGoogle Scholar
  27. Nicholas W L, Hodda M. 1999. The free-living nematodes of a temperate, high energy, sandy beach: faunal composition and variation over space and time. Hydrobiologia, 394: 113–127CrossRefGoogle Scholar
  28. Perry C T, Kench P S, Smithers S G, et al. 2013. Time scales and modes of reef lagoon infilling in the Maldives and controls on the onset of reef island formation. Geology, 41(10): 1111–1114CrossRefGoogle Scholar
  29. Pfannkuche O, Thiel H. 1988. Sample processing. In: Higgins R P, Thiel H, eds. Introduction to the Study of Meiofauna. Washington: Smithsonian Inst, 134–145Google Scholar
  30. Platt H M, Warwick R M. 1983. Free Living Marine Nematodes. Part I. British Enoplids. Synopses of the British Fauna (New Series) No. 28. Cambridge: Cambridge University PressGoogle Scholar
  31. Platt H M, Warwick R M. 1988. Free living marine nematodes. Part II. British Chromadorids. Synopses of the British Fauna (New Series) No. 38. Leiden, Netherlands: E J Brill/W BackhuysGoogle Scholar
  32. Raes M, De Troch M, Ndaro S G M, et al. 2007. The structuring role of microhabitat type in coral degradation zones: a case study with marine nematodes from Kenya and Zanzibar. Coral Reefs, 26(1): 113–126CrossRefGoogle Scholar
  33. Raes M, Vanreusel A. 2006. Microhabitat type determines the composition of nematode communities associated with sedimentclogged cold-water coral framework in the Porcupine Seabight (NE Atlantic). Deep Sea Research Part I, 53(12): 1880–1894CrossRefGoogle Scholar
  34. Sandulli R, Semprucci F, Balsamo M. 2014. Taxonomic and functional biodiversity variations of meiobenthic and nematode assemblages across an extreme environment: a study case in a Blue Hole cave. Ital J Zool, 81(4): 508–516CrossRefGoogle Scholar
  35. Schratzberger M, Bolam S G, Whomersley P, et al. 2004a. Development of a meiobenthic nematode community following the intertidal placement of various types of sediment. J Exp Mar Biol Ecol, 303(1): 79–96CrossRefGoogle Scholar
  36. Schratzberger M, Bolam S, Whomersley P, et al. 2006. Differential response o nematode colonist communities to the intertidal placement of dredged material. J Exp Mar Biol Ecol, 334(2): 244–255CrossRefGoogle Scholar
  37. Schratzberger M, Lampadariou N, Somerfield P J, et al. 2009. The impact of seabed disturbance on nematode communities: linking field and laboratory observations. Mar Biol, 156(4): 709–724CrossRefGoogle Scholar
  38. Schratzberger M, Rees H L, Boyd S E. 2000. Effects of simulated deposition of dredged material on structure of nematode assemblagesthe role of burial. Mar Biol, 136(3): 519–530CrossRefGoogle Scholar
  39. Schratzberger M, Whomersley P, Warr K, et al. 2004b. Colonisation of various types of sediment by estuarine nematodes via lateral infaunal migration: a laboratory study. Mar Biol, 145(1): 69–78CrossRefGoogle Scholar
  40. Seinhorst J W. 1959. A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica, 4(1): 67–69CrossRefGoogle Scholar
  41. Semprucci F, Balsamo M, Frontalini F. 2014a. The nematode assemblage of a coastal lagoon (Lake Varano, Southern Italy): ecology and biodiversity patterns. Sci Mar, 78(4): 579–588CrossRefGoogle Scholar
  42. Semprucci F, Boi P, Manti A, et al. 2010a. Benthic communities along a littoral of the Central Adriatic Sea (Italy). Helgol Mar Res, 64(2): 101–115CrossRefGoogle Scholar
  43. Semprucci F, Colantoni P, Baldelli G, et al. 2010b. The distribution of meiofauna on back-reef sandy platforms in the Maldives (Indian Ocean). Mar Ecol, 31(4): 592–607CrossRefGoogle Scholar
  44. Semprucci F, Colantoni P, Baldelli G, et al. 2013a. Meiofauna associated with coral sediments in the Maldivian subtidal habitats (Indian Ocean). Mar Biodiv, 43(3): 189–198CrossRefGoogle Scholar
  45. Semprucci F, Colantoni P, Sbrocca C, et al. 2011. Meiofauna in sandy back-reef platforms differently exposed to the monsoons in the Maldives (Indian Ocean). J Mar Syst, 87(3–4): 208–215CrossRefGoogle Scholar
  46. Semprucci F, Colantoni P, Sbrocca C, et al. 2014b. Spatial patterns of distribution of meiofaunal and nematode assemblages in the Huvadhoo lagoon (Maldives, Indian Ocean). J Mar Biol Assoc UK, 94(7): 1377–1385CrossRefGoogle Scholar
  47. Semprucci F, Frontalini F, Sbrocca C, et al. 2015a. Meiobenthos and free-living nematodes as tools for biomonitoring environments affected by riverine impact. Environ Monit Assess, 187: 251CrossRefGoogle Scholar
  48. Semprucci F, Losi V, Moreno M. 2015b. A review of Italian research on free-living marine nematodes and the future perspectives in their use as Ecological Indicators (EcoInd). Medit Mar Sci, 16(2): 352–365Google Scholar
  49. Semprucci F, Moreno M, Sbrocca S. et al. 2013b. The nematode assemblage as a tool for the assessment of marine ecological quality status: a case-study in the Central Adriatic Sea. Medit Mar Sci, 14(1): 48–57CrossRefGoogle Scholar
  50. Soetaert K E R, Muthumbi A, Heip C H R. 2002. Size and shape of ocean margin nematodes: morphological diversity and depthrelated patterns. Mar Ecol Prog Ser, 242: 179–193CrossRefGoogle Scholar
  51. Somerfield P J, Dashfield S L, Warwick R M. 2007. Three-dimensional spatial structure: nematodes in a sandy tidal flat. Mar Ecol Prog Ser, 336: 177–186CrossRefGoogle Scholar
  52. Stoddart D R, Steers J A. 1977. The nature and origin of coral reef islands. In: Jones O A, Endean R, eds. Biology and Geology of Coral Reefs, vol 4. New York: Academic Press, 59–105CrossRefGoogle Scholar
  53. UNEP. 2005. After the tsunami: rapid environmental assessment. Nairobi: UNEPGoogle Scholar
  54. Vanaverbeke J, Soetaert K, Vincx M. 2004. Changes in morphometric characteristics of nematode communities during a spring phytoplankton bloom deposition. Mar Ecol Prog Ser, 273: 139–146CrossRefGoogle Scholar
  55. Vanaverbeke J, Bezerra T N, Braeckman U, et al. 2015. NeMys: World Database of Free-Living Marine Nematodes. http://nemys. ugent.beon [2015-09-01]Google Scholar
  56. Vanhove S, Vermeeren H, Vanreusel A. 2004. Meiofauna towards the South Sandwich Trench (750–6300 m), focus on nematodes. Deep Sea Research Part II, 51(14–16): 1665–1687CrossRefGoogle Scholar
  57. Vanreusel A, Fonseca G, Danovaro R, et al. 2010. The contribution of deep-sea macrohabitat heterogeneity to global nematode diversity. Mar Ecol, 31(1): 6–20CrossRefGoogle Scholar
  58. Warwick R M, Platt H M, Somerfield P J. 1998. Free-living Marine Nematodes: Monhysterids Part III (Synopses of the British Fauna), (New Series) No. 53. Shrewsbury, UK: Field Studies CouncilGoogle Scholar
  59. Woodroffe C D, McLean R F, Smithers S G, et al. 1999. Atoll reef-island formation and response to sea-level change: West Island, Cocos (Keeling) Islands. Mar Geol, 160(1–2): 85–104CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Dipartimento di Scienze Biomolecolari (DiSB)Università di UrbinoUrbinoItaly

Personalised recommendations