Acta Oceanologica Sinica

, Volume 35, Issue 5, pp 9–17 | Cite as

The decadally modulating eddy field in the upstream Kuroshio Extension and its related mechanisms

  • Shihong Wang
  • Zhiliang Liu
  • Chongguang Pang
  • Huiqing Liu


Both the level of the high-frequency eddy kinetic energy (HF-EKE) and the energy-containing scale in the upstream Kuroshio Extension (KE) undergo a well-defined decadal modulation, which correlates well with the decadal KE path variability. The HF-EKE level and the energy-containing scales will increase with unstable KE path and decrease with stable KE path. Also the mesoscale eddies are a little meridionally elongated in the stable state, while they are much zonally elongated in the unstable state. The local baroclinic instability and the barotropic instability associated with the decadal modulation of HF-EKE have been investigated. The results show that the baroclinic instability is stronger in the stable state than that in the unstable state, with a shorter characteristic temporal scale and a larger characteristic spatial scale. Meanwhile, the regional-averaged barotropic conversion rate is larger in the unstable state than that in the stable state. The results also demonstrate that the baroclinic instability is not the dominant mechanism influencing the decadal modulation of the mesoscale eddy field, while the barotropic instability makes a positive contribution to the decadal modulation.


Kuroshio Extension mesoscale eddy decadal modulation baroclinic instability barotropic energy conversion rate nonlinear eddy-eddy interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arbic B K, Flierl G R. 2004. Effects of mean flow direction on energy, isotropy, and coherence of baroclinically unstable beta-plane geostrophic turbulence. Journal of Physical Oceanography, 34(1): 77–93CrossRefGoogle Scholar
  2. Berloff P, Meacham S P. 1998. On the stability of the wind-driven circulation. Journal of Marine Research, 56(5): 937–993CrossRefGoogle Scholar
  3. Bessières L, Rio M H, Dufau C, et al. 2013. Ocean state indicators from MyOcean altimeter products. Ocean Science, 9(3): 545–560CrossRefGoogle Scholar
  4. Charney J G, Stern M E. 1962. On the stability of internal baroclinic jets in a rotating atmosphere. Journal of the Atmospheric Sciences, 19(2): 159–172CrossRefGoogle Scholar
  5. Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216CrossRefGoogle Scholar
  6. Dewar W K, Bane J M. 1989. Gulf stream dynamics. Pa: eddy energetics at 73°W. Journal of Physical Oceanography, 19(10): 1574–1587CrossRefGoogle Scholar
  7. Dijkstra H A, Ghil M. 2005. Low-frequency variability of the largescale ocean circulation: a dynamical systems approach. Reviews of Geophysics, 43(3): doi: 10.1029/2002RG000122Google Scholar
  8. Ducet N, Le Traon P Y, Reverdin G. 2000. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS- 1 and -2. Journal of Geophysical Research: Oceans (1978–2012), 105(C8): 19477–19498CrossRefGoogle Scholar
  9. Eady E T. 1949. Long waves and cyclone waves. Tellus A, 1(3): 33–52CrossRefGoogle Scholar
  10. Ferrari R, Wunsch C. 2008. Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annual Review of Fluid Mechanics, 41(1): 253–282CrossRefGoogle Scholar
  11. Frisch U. 1995. Turbulence: The Legacy of A.N. Kolmogorov. Cambridge: Cambridge University PressGoogle Scholar
  12. Ingleby B, Huddleston M. 2007. Quality control of ocean temperature and salinity profiles-Historical and real-time data. Journal of Marine Systems, 65(1): 158–175CrossRefGoogle Scholar
  13. Jackett D R, McDougall T J. 1997. A neutral density variable for the world's oceans. Journal of Physical Oceanography, 27(2): 237–263CrossRefGoogle Scholar
  14. Kobashi F, Kawamura H. 2002. Seasonal variation and instability nature of the North Pacific Subtropical Countercurrent and the Hawaiian Lee Countercurrent. Journal of Geophysical Research: Oceans (1978–2012), 107(C11): 61–618CrossRefGoogle Scholar
  15. Le Traon P Y, Dibarboure G, Ducet N. 2001. Use of a high-resolution model to analyze the mapping capabilities of multiple-altimeter missions. Journal of Atmospheric and Oceanic Technology, 18(7): 1277–1288CrossRefGoogle Scholar
  16. Le Traon P Y, Nadal F, Ducet N. 1998. An improved mapping method of multisatellite altimeter data. Journal of Atmospheric and Oceanic Technology, 15(2): 522–534CrossRefGoogle Scholar
  17. Nonaka M, Xie Shangping. 2003. Covariations of sea surface temperature and wind over the Kuroshio and its extension: evidence for ocean-to-atmosphere feedback. Journal of Climate, 16(9): 1404–1413CrossRefGoogle Scholar
  18. Pedlosky J. 1964. The stability of currents in the atmosphere and the ocean: part I. Journal of the Atmospheric Sciences, 21(2): 201–219CrossRefGoogle Scholar
  19. Phillips N A. 1954. Energy Transformations and Meridional Circulations associated with simple Baroclinic Waves in a two-level, Quasi-geostrophic Model. Tellus A, 6(3): 273–286CrossRefGoogle Scholar
  20. Pierini S. 2006. A Kuroshio Extension system model study: decadal chaotic self-sustained oscillations. Journal of Physical Oceanography, 36(8): 1605–1625CrossRefGoogle Scholar
  21. Qiu Bo. 2002. The Kuroshio Extension system: its large-scale variability and role in the midlatitude ocean-atmosphere interaction. Journal of Oceanography, 58(1): 57–75CrossRefGoogle Scholar
  22. Qiu Bo, Chen Shuiming. 2005. Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. Journal of Physical Oceanography, 35(11): 2090–2103CrossRefGoogle Scholar
  23. Qiu Bo, Chen Shuiming. 2006. Decadal variability in the formation of the North Pacific Subtropical Mode Water: oceanic versus atmospheric control. Journal of Physical Oceanography, 36(7): 1365–1380CrossRefGoogle Scholar
  24. Qiu Bo, Chen Shuiming. 2010. Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deep Sea Research Part: Topical Studies in Oceanography, 57(13–14): 1098–1110CrossRefGoogle Scholar
  25. Qiu Bo, Kelly K A. 1993. Upper-ocean heat balance in the Kuroshio Extension region. Journal of Physical Oceanography, 23(9): 2027–2041CrossRefGoogle Scholar
  26. Qiu Bo, Scott R B, Chen Shuiming. 2008. Length scales of eddy generation and nonlinear evolution of the seasonally modulated South Pacific Subtropical Countercurrent. Journal of Physical Oceanography, 38(7): 1515–1528CrossRefGoogle Scholar
  27. Scott R B, Wang Faming. 2005. Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. Journal of Physical Oceanography, 35(9): 1650–1666CrossRefGoogle Scholar
  28. Smith K S. 2007. The geography of linear baroclinic instability in Earth's oceans. Journal of Marine Research, 65(5): 655–683CrossRefGoogle Scholar
  29. Taguchi B, Xie Shangping, Schneider N, et al. 2007. Decadal variability of the Kuroshio Extension: observations and an eddy-resolving model hindcast. Journal of Climate, 20(11): 2357–2377CrossRefGoogle Scholar
  30. Tai C K, White W B. 1990. Eddy variability in the Kuroshio Extension as revealed by Geosat altimetry: energy propagation away from the jet, Reynolds stress, and seasonal cycle. Journal of Physical Oceanography, 20(11): 1761–1777CrossRefGoogle Scholar
  31. Tulloch R, Marshall J, Hill C, et al. 2011. Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. Journal of Physical Oceanography, 41(6): 1057–1076CrossRefGoogle Scholar
  32. Tulloch R, Marshall J, Smith K S. 2009. Interpretation of the propagation of surface altimetric observations in terms of planetary waves and geostrophic turbulence. Journal of Geophysical Research: Oceans, 114(C2): doi: 10.1029/2008JC005055Google Scholar
  33. Vivier F, Kelly K A, Thompson L A. 2002. Heat budget in the Kuroshio extension region: 1993–99. Journal of Physical Oceanography, 32(12): 3436–3454CrossRefGoogle Scholar
  34. Wang Shihong, Liu Zhiliang, Pang Chongguang. 2015. Geographical distribution and anisotropy of the inverse kinetic energy cascade, and its role in the eddy equilibrium processes. Journal of Geophysical Research: Oceans, 120(7): 4891–4906, doi: 10.1002/014JC010476Google Scholar
  35. Waterman S, Hogg N G, Jayne S R. 2011. Eddy-mean flow interaction in the Kuroshio extension region. Journal of Physical Oceanography, 41(6): 1182–1208CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Shihong Wang
    • 1
    • 2
  • Zhiliang Liu
    • 1
  • Chongguang Pang
    • 1
  • Huiqing Liu
    • 3
  1. 1.Key Laboratory of Ocean Circulation and Waves, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.International Hurricane Research CenterFlorida International UniversityMiamiUSA

Personalised recommendations