Acta Oceanologica Sinica

, Volume 34, Issue 7, pp 1–18 | Cite as

Comparative simulation study of effects of eddy-topography interaction in the East/Japan Sea deep circulation

Article

Abstract

In this study the structure and seasonal variations of deep mean circulation in the East/Japan Sea (EJS) were numerically simulated using a mid-resolution ocean general circulation model with two different parameterizations for the eddy-topography interaction (ETI). The strong deep mean circulations observed in the EJS are well reproduced when using the ETI parameterizations. The seasonal variability in the EJS deep layer is shown by using ETI parameterization based on the potential vorticity approach, while it is not shown in the statistical dynamical parameterization. The driving mechanism of the strong deep mean currents in the EJS are discussed by investigating the effects of model grids and parameterizations. The deep mean circulation is more closely related to the baroclinic process and potential vorticity than it is to the wind driven circulation.

Keywords

East/Japan Sea deep mean current seasonal variability ocean general circulation model eddytopography interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chapman D C, Haidvogel D B. 1992. Formation of Taylor caps over a tall isolated seamount in a stratified ocean. Geophysical & Astrophysical Fluid Dynamics, 64(1–4): 31–65CrossRefGoogle Scholar
  2. Charney J G. 1947. The dynamics of long waves in a baroclinic westerly current. J Meteor, 4(5): 136–162CrossRefGoogle Scholar
  3. Choi B H, Kim K O, Eum H M. 2002. Digital bathymetric and topographic data for neighboring seas of Korea. J Korean Soc Coastal Ocean Eng (in Korean), 14: 41–50Google Scholar
  4. Choi Y J, Yoon J-H. 2010. Structure and seasonal variability of the deep mean circulation of the East Sea (Sea of Japan). J Oceanogr, 66(3): 349–361CrossRefGoogle Scholar
  5. Crosby D S, Breaker L C, Gemmill W H. 1993. A proposed definition for vector correlation in geophysics: theory and application. J Atmos Oceanic Technol, 10(3): 355–367CrossRefGoogle Scholar
  6. Danchenkov M A, Riser S C, Yoon J-H. 2003. Deep currents of the central Sea of Japan. Pacific Oceanogr, 1: 6–11Google Scholar
  7. Dewar W K. 1998. Topography and barotropic transport control by bottom friction. J Mar Res, 56: 295–328CrossRefGoogle Scholar
  8. Eady E T. 1949. Long waves and cyclone waves. Tellus, 1(3): 33–52CrossRefGoogle Scholar
  9. Eby M, Holloway G. 1994. Grid transformation for incorporating the Arctic in a global ocean model. Climate Dyn, 10(4–5): 241–247Google Scholar
  10. Gent P R, McWilliams J C. 1990. Isopycnal mixing in ocean circulation models. J Phys Oceanogr, 20(1): 150–155CrossRefGoogle Scholar
  11. Greatbatch R J. 1998. Exploring the relationship between eddy-induced transport velocity, vertical momentum transfer, and the isopycnal flux of potential vorticity. J Phys Oceanogr, 28(3): 422–432CrossRefGoogle Scholar
  12. Greatbatch R J, Li Guoqing. 2000. Alongslope mean flow and an associated upslope bolus flux of tracer in a parameterization of mesoscale turbulence. Deep-Sea Res Pt I, 47(4): 709–735CrossRefGoogle Scholar
  13. Hanawa K, Mitsudera M. 1985. About constructing of daily mean values of ocean data. Coastal Res Note, 23: 79–87Google Scholar
  14. Hirose N, Kawamura H, Lee H J, et al. 2007. Sequential forecasting of the surface and subsurface conditions in the Japan Sea. J Oceanogr, 63(3): 467–481CrossRefGoogle Scholar
  15. Hogan P J, Hurlburt H E. 2000. Impact of upper ocean-topographical coupling and isopycnal outcropping in Japan/East Sea models with 1/8° to 1/64° resolution. J Phys Oceanogr, 30(10): 2535–2561CrossRefGoogle Scholar
  16. Holloway G. 1992. Representing topographic stress for large-scale ocean models. J Phys Oceanogr, 22(9): 1033–1046CrossRefGoogle Scholar
  17. Holloway G. 2008. Observing global ocean topostrophy. J Geophys Res, 113(C7): C07054, doi: 10.1029/2007JC004635Google Scholar
  18. Holloway G, Sou T, Eby M. 1995. Dynamics of circulation of the Japan Sea. J Mar Res, 53(4): 539–569CrossRefGoogle Scholar
  19. Holloway G, Wang Zeliang. 2009. Representing eddy stress in an Arctic Ocean model. J Geophys Res, 114: C06020, doi: 10.1029/ 2008JC005169Google Scholar
  20. Huppert H E. 1975. Some remarks on the initiation of inertial Taylor columns. J Fluid Mech, 67: 397–412CrossRefGoogle Scholar
  21. Ishizaki H, Motoi T. 1999. Reevaluation of the Takano-Oonishi scheme for momentum advection on bottom relief in ocean models. J Atmos Oceanic Technol, 16(12): 1994–2010CrossRefGoogle Scholar
  22. Isoda Y, Saitoh S I. 1993. The northward intruding eddy along the East coast of Korea. J Oceanogr, 49(4): 443–458CrossRefGoogle Scholar
  23. Kim Y J. 2007. A study on the Japan/East Sea oceanic circulation using an extra-fine resolution model [dissertation]. Fukuoka: Kyushu UniversityGoogle Scholar
  24. Kim K, Kim K-R, Kim D-H, et al. 2001. Warming and structural changes in the East (Japan) Sea: A clue to future changes in global oceans? Geophys Res Let, 28(17): 3293–3296CrossRefGoogle Scholar
  25. Kim C H, Yoon J-H. 1996. Modeling of the wind-driven circulation in the Japan Sea using a reduced gravity model. J Oceanogr, 52(3): 359–373CrossRefGoogle Scholar
  26. Kitani K. 1987. Direct current measurement of the Japan Sea Proper Water (in Japanese). Nihonkai-ku Suisan Shiken Kenkyuu Renraku News, Japan Sea National Fisheries Research Institute, 341: 1–6Google Scholar
  27. Lee H J, Yoon J-H, Kawamura H, et al. 2003. Comparison of RIAMOM and MOM in modeling the East Sea/Japan Sea circulation. Ocean and Polar Research, 25(3): 287–302CrossRefGoogle Scholar
  28. Luchin V A, Manko A N, Mosyagina S Y, et al. 2003. Hydrography of water masses (in Russian). In: Terziev F S, ed. Hydrometeorology and Hydrochemistory of Seas. Sankt-Petersburg: Hydrometeoizdat, 8: 157–256Google Scholar
  29. Maltrud M, Holloway G. 2008. Implementing biharmonic neptune in a global eddying ocean model. Ocean Modelling, 21(1–2): 22–34CrossRefGoogle Scholar
  30. Merryfield W, Scott R. 2007. Bathymetric influence on mean currents in two high-resolution near-global ocean models. Ocean Modelling, 16(1–2): 76–94CrossRefGoogle Scholar
  31. Mesinger F, Arakawa A. 1976. Numerical methods used in atmospheric models, Volume 1. WMO/ICSU Joint Organizing Committee, GARP Publication Series No. 17Google Scholar
  32. Minobe S, Sako A, Nakamura M. 2004. Interannual to interdecadal variability in the Japan sea based on a new gridded upper water temperature dataset. J Phys Oceanogr, 34(11): 2382–2397CrossRefGoogle Scholar
  33. Mori K, Matsuno T, Senjyu T. 2005. Seasonal/spatial variations of the near-inertial oscillations in the deep water of the Japan Sea. J Oceanogr, 61(4): 761–773CrossRefGoogle Scholar
  34. NCAR. 1989. NCAR ASCII Version of ETOPO5 earth surface elevation. Data Support Section, NCARGoogle Scholar
  35. Noh Y. 1996. Dynamics of diurnal thermocline formation in the oceanic mixed layer. J Phys Oceanogr, 26(10): 2183–2195CrossRefGoogle Scholar
  36. Oort A H, Ascher S C, Levitus S, et al. 1989. New estimates of the available potential energy in the World Ocean. J Geophys Res, 94(C3): 3187–3200CrossRefGoogle Scholar
  37. Penduff T, Juza M, Brodeau L, et al. 2010. Impact of global ocean model resolution on sea-level variability with emphasis on interannual time scales. Ocean Sci, 6: 269–284CrossRefGoogle Scholar
  38. Sakai R, Yoshikawa Y. 2005. Numerical experiments on the formation mechanism of abyssal current in the Japan Sea. Engineer Sci Rep Kyushu Univ (in Japanese), 26(4): 423–430Google Scholar
  39. Salmon R, Holloway G, Hendershott M C. 1976. The equilibrium statistical mechanics of simple quasi-geostrophic models. J Fluid Mech, 75(4): 691–703CrossRefGoogle Scholar
  40. Senjyu T, Shin H R, Yoon J-H, et al. 2005. Deep flow field in the Japan/East Sea as deduced from direct current measurements. Deep-Sea Res Pt II, 52(11–13): 1726–1741CrossRefGoogle Scholar
  41. Senjyu T, Sudo H. 1996. Interannual variation of the upper portion of the japan sea proper water and its probable cause. J Oceanogr, 52(1): 27–42CrossRefGoogle Scholar
  42. Seung Y-H, Yoon J-H. 1995. Robust diagnostic modeling of the Japan sea circulation. J Oceanogr, 51(4): 421–440CrossRefGoogle Scholar
  43. Shin H R, Shin C W, Kim C, et al. 2005. Movement and structural variation of warm eddy WE92 for three years in the Western East/Japan Sea. Deep-Sea Res Pt II, 52(11–13): 1742–1762CrossRefGoogle Scholar
  44. Takano K. 1974. A General Circulation Model For the World Ocean. Numerical Simulation of Weather and Climate Technical Report. Los Angeles: Univ of California, 47Google Scholar
  45. Takematsu M, Nagano Z, Ostrovski A, et al. 1999. Direct measurements of deep currents in the northern Japan Sea. J Oceanogr, 55(2): 207–216CrossRefGoogle Scholar
  46. Takikawa T, Yoon J-H. 2005. Volume transport through the Tsushima straits estimated from sea level difference. J Oceanogr, 61(4): 699–708CrossRefGoogle Scholar
  47. Taylor G I. 1917. Motion of solids in fluids when the motion is not irrotational. Proc Roy Soc, A93: 99–113CrossRefGoogle Scholar
  48. Teague W J, Tracey K L, Watts D R, et al. 2005. Observed deep circulation in the Ulleung Basin. Deep-Sea Res Pt II, 52(11–13): 1802–1826CrossRefGoogle Scholar
  49. Wallcraft A J, Kara A B, Hurlburt H E. 2005. Convergence of Laplacian diffusion versus resolution of an ocean model. Geophys Res Lett, 32(7), doi: 10.1029/2005GL022514Google Scholar
  50. Webb D J, de Cuevas S J, Richmond C S. 1998. Improved advection schemes for ocean models. J Atmos Oceanic Technol, 15(5): 1171–1187CrossRefGoogle Scholar
  51. Wessel P, Smith W H F. 1998. New, improved version of generic mapping tools released. EOS Trans AGU, 79: 579CrossRefGoogle Scholar
  52. Yoon J-H, Kawamura H. 2002. The formation and circulation of the intermediate water in the Japan Sea. J Oceanogr, 58(1): 197–211CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Center for Earth Information Science and TechnologyJapan Agency for Marine-Earth Science and TechnologyYokohamaJapan
  2. 2.GeoSystem Research CorporationGyeonggi-doKorea

Personalised recommendations