Acta Oceanologica Sinica

, Volume 34, Issue 5, pp 29–38 | Cite as

Variation of Indo-Pacific upper ocean heat content during 2001–2012 revealed by Argo

  • Xiaofen Wu
  • Zenghong Liu
  • Guanghong Liao
  • Lingjuan Wu
Article

Abstract

Understanding of the temporal variation of oceanic heat content (OHC) is of fundamental importance to the prediction of climate change and associated global meteorological phenomena. However, OHC characteristics in the Pacific and Indian oceans are not well understood. Based on in situ ocean temperature and salinity profiles mainly from the Argo program, we estimated the upper layer (0–750 m) OHC in the Indo-Pacific Ocean (40°S–40°N, 30°E–80°W). Spatial and temporal variability of OHC and its likely physical mechanisms are also analyzed. Climatic distributions of upper-layer OHC in the Indian and Pacific oceans have a similar saddle pattern in the subtropics, and the highest OHC value was in the northern Arabian Sea. However, OHC variabilities in the two oceans were different. OHC in the Pacific has an east-west see-saw pattern, which does not appear in the Indian Ocean. In the Indian Ocean, the largest change was around 10°S. The most interesting phenomenon is that, there was a long-term shift of OHC in the Indo-Pacific Ocean during 2001–2012. Such variation coincided with modulation of subsurface temperature/salinity. During 2001–2007, there was subsurface cooling (freshening) nearly the entire upper 400 m layer in the western Pacific and warming (salting) in the eastern Pacific. During 2008–2012, the thermocline deepened in the western Pacific but shoaled in the east. In the Indian Ocean, there was only cooling (upper 150 m only) and freshening (almost the entire upper 400 m) during 2001–2007. The thermocline deepened during 2008–2012 in the Indian Ocean. Such change appeared from the equator to off the equator and even to the subtropics (about 20°N/S) in the two oceans. This long-term change of subsurface temperature/salinity may have been caused by change of the wind field over the two oceans during 2001–2012, in turn modifying OHC.

Key words

ocean heat content temperature and salinity profiles wind forcing Argo Indo-Pacific Ocean 

References

  1. Antonov J I, Levitus S, Boyer T P. 2004. Climatological annual cycle of ocean heat content. Geophys Res Lett, 31(4): L04304, doi:  10.1029/2003GL018851
  2. Behera S, Yamagata T. 2010. Imprint of the El Niño Modoki on decadal sea level changes. Geophys Res Lett, 37(23): L23702, doi:  10.1029/2010GL045936 CrossRefGoogle Scholar
  3. Cayan D R. 1992. Latent and sensible heat flux anomalies over the northern oceans: driving the sea surface temperature. J Phys Oceanogr, 22(8): 859–881CrossRefGoogle Scholar
  4. Di Iorio D, Sloan C. 2009. Upper ocean heat content in the Nordic seas. J Geophys Res, 14(C4): C04017, doi:  10.1029/2007JC004674 Google Scholar
  5. Hansen J, Nazarenko L, Ruedy R, et al. 2005. Earth's energy imbalance: confirmation and implications. Science, 308(5727): 1431–1435CrossRefGoogle Scholar
  6. Hasegawa T, Hanawa K. 2003. Heat content variability related to ENSO events in the Pacific. J Phys Oceanogr, 33(2): 407–421CrossRefGoogle Scholar
  7. Hasegawa T, Hanawa K. 2007. Upper ocean heat content and atmospheric anomaly fields in the off-equatorial North Pacific related to ENSO. Journal of Oceanography, 63(4): 561–572CrossRefGoogle Scholar
  8. Hosoda S, Ohira T, Nakamura T. 2008. A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Report of Research and Development, 8: 47–59CrossRefGoogle Scholar
  9. Jin Feifei. 1996. Tropical ocean-atmosphere interaction, the Pacific cold tongue, and the El Niño-Southern Oscillation. Science, 274(5284): 76–78CrossRefGoogle Scholar
  10. Jin Feifei. 1997a. An equatorial ocean recharge paradigm for ENSO. Part?: Conceptual model. J Atmos Sci, 54(7): 811–829CrossRefGoogle Scholar
  11. Jin Feifei. 1997b. An equatorial ocean recharge paradigm for ENSO. Part?: A stripped-down coupled model. J Atmos Sci, 54(7): 830–847CrossRefGoogle Scholar
  12. Jin Feifei, An S. 1999. Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys Res Lett, 26(19): 2989–2992CrossRefGoogle Scholar
  13. Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc, 77(3): 437–471CrossRefGoogle Scholar
  14. Kelly K A. 2004. The relationship between oceanic heat transport and surface fluxes in the western North Pacific: 1970–2000. J Climate, 17(3): 573–588CrossRefGoogle Scholar
  15. Klein A S, Soden B J, Lau N C. 1999. Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J Climate, 12(4): 917–932CrossRefGoogle Scholar
  16. Lee Tong, McPhaden M J. 2008. Decadal phase change in large-scale sea level and winds in the Indo-Pacific region at the end of the 20th century. Geophys Res Lett, 35(1): L01605, doi:  10.1029/2007GL032419 CrossRefGoogle Scholar
  17. Levitus S, Antonov J I, Boyer T, et al. 2000. Warming of the world ocean. Science, 287(5461): 2225–2229CrossRefGoogle Scholar
  18. Levitus S, Antonov J I, Boyer T, et al. 2005. EOF analysis of upper ocean heat content, 1956–2003. Geophys Res Lett, 32(18): L18607, doi:  10.1029/2005GL023606 CrossRefGoogle Scholar
  19. Luo Jingjia, Yamagata T. 2001. Long-term El Niño-Southern Oscillation (ENSO)-like variation with special emphasis on the south Pacific. J Geophys Res, 106(C10): 22211–22227CrossRefGoogle Scholar
  20. Mantua H J, Hare S R, Zhang Yuan, et al. 1997. A pacific interdecadal climate oscillation with impacts on salmon production. Bull Amer Meteor Soc, 78(6): 1069–1079CrossRefGoogle Scholar
  21. Mayer D A, Weisberg R H. 1998. El Niño-southern oscillation-related ocean-atmosphere coupling in the western equatorial Pacific. J Geophys Res, 103(C9): 18635–18648CrossRefGoogle Scholar
  22. McPhaden M J. 2003. Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys Res Lett, 30(9): 1480, doi:  10.1029/2003GL016872 CrossRefGoogle Scholar
  23. Meinen C S, McPhaden M J. 2000. Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J Climate, 13(20): 3551–3559CrossRefGoogle Scholar
  24. Minobe S. 1997. A 50–70 year climatic oscillation over the north Pacific and north America. Geophys Res Lett, 24(6): 683–686CrossRefGoogle Scholar
  25. Moon J H, Song Y T. 2013. Sea level and heat content changes in the western north Pacific. J Geophys Res: Oceans, 118(4): 2014–2022CrossRefGoogle Scholar
  26. Nitta T, Yamada S. 1989. Recent warming of tropical sea surface temperature and its relationship to the northern hemisphere circulation. J Meter Soc Jpn, 67(3): 375–383Google Scholar
  27. Palmer M D, McNeall D J, Dunstone N J. 2011. Importance of the deep ocean for estimating decadal changes in earth's radiation balance. Geophys Res Lett, 38 (13):L13707, doi:  10.1029/2011GL047835 CrossRefGoogle Scholar
  28. Rao S A, Behera S K, Masumoto Y, et al. 2002. Interannual subsurface variability in the Tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole. Deep-Sea Res II-Top Stud Oceanogr, 49(7–8): 1549–1572CrossRefGoogle Scholar
  29. Saha S, Moorthi S, Pan H L, et al. 2010. The NCEP climate forecast system reanalysis. Bull Amer Meteor Soc, 91(8): 1015–1057CrossRefGoogle Scholar
  30. Saji N H, Goswami B N, Vinayachandran P N, et al. 1999. A dipole mode in the tropical Indian Ocean. Nature, 401(6751): 360–363Google Scholar
  31. Shay L K, Brewster J K. 2010. Oceanic heat content variability in the eastern Pacific Ocean for hurricane intensity forecasting. Mon Wea Rev, 138(6): 2110–2131CrossRefGoogle Scholar
  32. Shinoda T, Hendon H H, Alexander M A. 2004. Surface and subsurface dipole variability in the Indian Ocean and its relation with ENSO. Deep-Sea Res Part I: Oceanogr Res Pap, 51(5): 619–635CrossRefGoogle Scholar
  33. Suarez M J, Schopf P S. 1998. A delayed action oscillator for ENSO. Journal of the Atmospheric Sciences, 45(21): 3283–3287CrossRefGoogle Scholar
  34. Stephenson G R Jr, Gille S T, Sprintall J. 2012. Seasonal variability of upper ocean heat content in Drake Passage. J Geophys Res, 117(C4): C04019, doi:  10:1029/2011JC007772 CrossRefGoogle Scholar
  35. Sverdrup H U. 1947. Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proceedings of the National Academy of Sciences of the United States of America, 33(11): 318–326CrossRefGoogle Scholar
  36. Takahashi K. 2005. The annual cycle of heat content in the Peru Current region. J Climate, 18(23): 4937–4954CrossRefGoogle Scholar
  37. Tozuka T, Yamagata T. 2003. Annual ENSO. J Phys Oceanogr, 33(8): 1564–1578CrossRefGoogle Scholar
  38. Weisberg R H, Wang C Z. 1997. A western Pacific Oscillator paradigm for the El Niño-Southern Oscillation. Geophys Res Lett, 24(7): 779–782CrossRefGoogle Scholar
  39. White W B, Meyers G A, Donguy J R, et al. 1985. Short-term climatic variability in the thermal structure of the Pacific Ocean during 1979–82. Journal of Physical Oceanography, 15(7): 917–935CrossRefGoogle Scholar
  40. White W B, Tourre Y M, Barlow M, et al. 2003. A delayed action oscillator shared by biennial, interannual, and decadal signals in the Pacific Basin. J Geophys Res, 108 (C3): 3070, doi:  10.1029/2002JC001490 CrossRefGoogle Scholar
  41. Willis J K, Roemmich D, Cornuelle B. 2004. Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J Geophys Res: Oceans, 109(C12), doi:  10.1029/2003JC002260
  42. Wu Lixin, Jing Zhao, Riser S, et al. 2011. Seasonal and spatial variations of Southern Ocean diapycnal mixing from Argo profiling floats. Nature Geoscience, 4(6): 363–366CrossRefGoogle Scholar
  43. Wu Shu, Liu Qinyu, Hu Ruijin. 2007. The main modes of heat content anomaly in the tropical Pacific-Indian Ocean on interannual time scale. Periodical of Ocean University of China (in Chinese), 37(3): 365–371Google Scholar
  44. Xue Yan, Balmaseda M A, Boyer T, et al. 2012. A comparative analysis of upper-ocean heat content variability from an ensemble of operational ocean reanalyses. J Climate, 25(20): 6905–6929CrossRefGoogle Scholar
  45. Yin Xiaobin, Wang Zhenzhan, Liu Yuguang, et al. 2007. Ocean response to Typhoon Ketsana traveling over the northwest Pacific and a numerical model approach. Geophys Res Lett, 34(21), doi:  10.1029/2007GL031477
  46. Zhang Ronghua, Levitus S. 1996. Structure and evolution of interannual variability of the Tropical Pacific upper ocean temperature. J Geophys Res, 101(C9): 20501–20524CrossRefGoogle Scholar
  47. Zhang Yuan, Wallace J M, Battisti D S. 1997. ENSO-like interdecadal variability: 1900–93. J Climate, 10(5): 1004–1020CrossRefGoogle Scholar
  48. Zheng Dongmei, Zhang Qilong. 2008. Study on the tropical Indian-Pacific ocean thermodynamic anomaly joint mode and its index definition. Advances in Marine Science (in Chinese), 26(1): 1–10Google Scholar
  49. Zhou Hui, Yuan Dongliang, Guo Peifang, et al. 2010. Meso-scale circulation at the intermediate-depth east of Mindanao observed by Argo profiling floats. Sci China Earth Sci, 53(3): 432–440CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Xiaofen Wu
    • 1
  • Zenghong Liu
    • 1
  • Guanghong Liao
    • 1
  • Lingjuan Wu
    • 2
  1. 1.State Key Laboratory of Satellite Ocean Environment DynamicsSecond Institute of Oceanography, State Oceanic AdministrationHangzhouChina
  2. 2.North China Sea Marine Forecasting Center of State Oceanic AdministrationQingdaoChina

Personalised recommendations