Acta Oceanologica Sinica

, Volume 33, Issue 11, pp 90–101 | Cite as

An upper ocean response to Typhoon Bolaven analyzed with Argo profiling floats

  • Zenghong Liu
  • Jianping Xu
  • Chaohui Sun
  • Xiaofen Wu
Article

Abstract

In situ observations from Argo profiling floats combined with satellite retrieved SST and rain rate are used to investigate an upper ocean response to Typhoon Bolaven from 20 through 29 August 2012. After the passage of Typhoon Bolaven, the deepening of mixed layer depth (MLD), and the cooling of mixed layer temperature (MLT) were observed. The changes in mixed layer salinity (MLS) showed an equivalent number of increasing and decreasing because the typhoon-induced salinity changes in the mixed layer were influenced by precipitation, evaporation, turbulent mixing and upwelling of thermocline water. The deepening of the MLD and the cooling of the MLT indicated a significant rightward bias, whereas the MLS was freshened to the left side of the typhoon track and increased on the other side. Intensive temperature and salinity profiles observed by Iridium floats make it possible to view response processes in the upper ocean after the passage of a typhoon. The cooling in the near-surface and the warming in the subsurface were observed by two Iridium floats located to the left side of the cyclonic track during the development stage of the storm, beyond the radius of maximum winds relative to the typhoon center. Water salinity increases at the base of the mixed layer and the top of the thermocline were the most obvious change observed by those two floats. On the right side of the track and near the typhoon center when the typhoon was intensified, the significant cooling from sea surface to a depth of 200×104 Pa, with the exception of the water at the top of the thermocline, was observed by the other Iridium float. Owing to the enhanced upwelling near the typhoon center, the water salinity in the near-surface increased noticeably. The heat pumping from the mixed layer into the thermocline induced by downwelling and the upwelling induced by the positive wind stress curl are the main causes for the different temperature and salinity variations on the different sides of the track. It seems that more time is required for the anomalies in the subsurface to be restored to pretyphoon conditions than for the anomalies in the mixed layer.

Key words

Typhoon Bolaven Argo profiling floats upper ocean response ocean heat content 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bender M A, Ginis I, Kurihara Y. 1993. Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. J Geophys Res, 98(D12): 23245–23263CrossRefGoogle Scholar
  2. Black P G. 1983. Ocean temperature changes induced by tropical cyclones [dissertation]. Pennsylvania: The Pennsylvania State UniversityGoogle Scholar
  3. Black W J, Dickey T D. 2008. Observations and analyses of upper ocean responses to tropical storms and hurricanes in the vicinity of Bermuda. J Geophys Res, 113: C08009Google Scholar
  4. Brink K H. 1989. Observation of the response of thermocline currents to hurricane. J Phys Oceanogr, 19: 1017–1022CrossRefGoogle Scholar
  5. Brooks D A. 1983. The wake of hurricane Allen in the western Gulf of Mexico. J Phys Oceanogr, 13: 117–129CrossRefGoogle Scholar
  6. Chen X, Pan D, He X, et al. 2012. Upper ocean responses to category 5 typhoon Megi in the western north Pacific. Acta Oceanologica Sinica, 31: 51–58CrossRefGoogle Scholar
  7. D’Asaro E A. 2003. The ocean boundary layer below hurricane Dennis. J Phys Oceanogr, 33: 561–578CrossRefGoogle Scholar
  8. D’Asaro E A, Sanford T B, Niiler P P, et al. 2007. Cold wake of hurricane Frances. Geophys Res Lett, 34: L15609CrossRefGoogle Scholar
  9. Dickey T D, Frye J, McNeil D, et al. 1998. Upper-ocean temperature response to hurricane Felix as measured by the Bermuda Testbed Mooring. Mon Wea Rev, 126: 1195–1201CrossRefGoogle Scholar
  10. Emanuel K A. 1986. An air-sea interaction theory for tropical cyclones: Part I. J Atmos Sci, 43: 585–604CrossRefGoogle Scholar
  11. Emanuel K A. 1991. The theory of hurricanes. Annual Rev Fluid Mech, 23: 179–196CrossRefGoogle Scholar
  12. Emanuel K A. 2001. Contribution of tropical cyclones to meridional heat transport by the oceans. J Geophys Res, 106(14): 14771–14781CrossRefGoogle Scholar
  13. Geisler J E. 1970. Linear theory of the response of a two layer ocean to a moving hurricane. Geophys Fluid Dyn, 1: 249–272CrossRefGoogle Scholar
  14. Gill A E. 1984. On the behavior of internal waves in the wakes of storms. J Phys Oceanogr, 14: 1129–1151CrossRefGoogle Scholar
  15. Ginis I. 2002. Hurricane-ocean interactions, tropical cyclone-ocean interactions, Chapter 3. In: Perrie W, ed. Atmosphere-Ocean Interactions. Advances in Fluid Mechanics Series, Volume 33. Boston, Massachusetts: WIT Press, 83–114Google Scholar
  16. Ginis I, Dikinov K Z. 1989. Modelling of the Typhoon Virginia (1978) forcing on the ocean. Meteor Hydrol, 7: 53–60Google Scholar
  17. Kara A B, Rochford P A, Hurlburt H E. 2000. An optimal definition for ocean mixed layer depth. J Geophys Res, 105: 16803–16821CrossRefGoogle Scholar
  18. Lin I I, Liu W T, Wu C C, et al. 2003. Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophys Res Letters, 30(3): 31Google Scholar
  19. Liu Zenghong, Xu Jianping, Zhu Bokang, et al. 2006. The upper ocean response to tropical cyclones in the northwestern Pacific during 2001–2004 by Argo data. Chinese Journal of Oceanology and Limnology (in Chinese), 25(2): 123–131CrossRefGoogle Scholar
  20. Liu Z, Xu J, Zhu B, et al. 2007. The upper ocean response to tropical cyclones in the northwestern Pacific analyzed with Argo data. Chin J Oceano Limnol, 25(2): 123–131CrossRefGoogle Scholar
  21. Maneesha K, Murty V S N, Ravichandran M, et al. 2012. Upper ocean variability in the Bay of Bengal during the tropical cyclones of Nargis and Laila. Prog Oceanogr, 106: 49–61CrossRefGoogle Scholar
  22. Mao Q, Chang S W, Pfeffer R L. 2000. Influence of large-scale initial oceanic mixed layer depth on tropical cyclones. Mon Wea Rev, 128:4058–4070CrossRefGoogle Scholar
  23. Park J J, Kwon Y-O, Price J F. 2011. Argo array observation of ocean heat content changes induced by tropical cyclones in the north Pacific. J Geophys Res, 116: C12025CrossRefGoogle Scholar
  24. Price J F. 1981. Upper ocean response to a hurricane. J Phys Oceanogr, 11:153–175CrossRefGoogle Scholar
  25. Price J F, Sanford T B, Forristall G Z. 1994. Forced stage response to a moving hurricane. J Phys Oceanogr, 24: 233–260CrossRefGoogle Scholar
  26. Robertson E J. 2003. The upper ocean salinity response to tropical cyclones [dissertation]. Rhode Island: University of Rhode IslandGoogle Scholar
  27. Sanford T B, Black P G, Haustein J R, et al. 1987. Ocean response to a hurricane Part I: observations. J Phys Oceanogr, 17(11): 2065–2083CrossRefGoogle Scholar
  28. Shay L K, Black P G, Mariano A J, et al. 1992. Upper ocean response to Hurricane Gilbert. J Geophys Res, 97: 20227–20248CrossRefGoogle Scholar
  29. Shay L K, Elsberry R L. 1987. Near-inertial ocean current response to hurricane Frederic. J Phys Oceanogr, 17:1249–1269CrossRefGoogle Scholar
  30. Shay L K, Elsberry R L, Black P G. 1989. Vertical structure of the ocean current response to a hurricane. J Phys Oceanogr, 19: 649–669CrossRefGoogle Scholar
  31. Stramma L, Cornillon P, Price J F. 1986. Satellite observations of sea surface cooling by hurricanes. J Geophys Res, 91: 5031–5035CrossRefGoogle Scholar
  32. Sun Liang, Yang Yuanjian, Fu Yunfei. 2009. Impacts of typhoons on the Kuroshio large meander: observation evidences. Atmos Ocean Sci Lett (in Chinese), 2(1): 45–50Google Scholar
  33. Sun Liang, Yang Yuanjian, Xian Tao, et al. 2012. Strong enhancement of chlorophyll a concentration by a weak typhoon. Mar Ecol Prog Ser (in Chinese), 404: 39–50CrossRefGoogle Scholar
  34. Wang J-W, Han W, Sriver R L. 2012. Impact of tropical cyclones on the ocean heat budget in the Bay of Bengal during 1999: 1. Model configuration and evaluation. J Geophys Res, 117: C09020Google Scholar
  35. Yang Y J, Sun L, Liu Q, et al. 2010. The biophysical responses of the upper ocean to the typhoons Namtheun and Malou in 2004. Int J Remote Sens, 31(17): 4559–4568CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Zenghong Liu
    • 1
    • 2
  • Jianping Xu
    • 1
    • 2
  • Chaohui Sun
    • 1
  • Xiaofen Wu
    • 1
  1. 1.State Key Laboratory Satellite Ocean Environment Dynamics, Second Institute of OceanographyState Oceanic AdministrationHangzhouChina
  2. 2.Second Institute of OceanographyState Oceanic AdministrationHangzhouChina

Personalised recommendations