Advertisement

Acta Oceanologica Sinica

, Volume 33, Issue 9, pp 152–159 | Cite as

Validation of housekeeping genes as internal controls for studying the gene expression in Pyropia haitanensis (Bangiales, Rhodophyta) by quantitative real-time PCR

  • Bing Li
  • Changsheng Chen
  • Yan Xu
  • Dehua Ji
  • Chaotian XieEmail author
Article

Abstract

Pyropia haitanensis is an economically important mariculture crop in China and has a high research value for several life phenomena, for example environmental tolerance. To explore the mechanisms underlying these characteristics, gene expression has been investigated at the whole transcriptome level. Gene expression studies using quantitative real-time PCR should start by selecting an appropriate internal control gene; therefore, the absolute expression abundance of six housekeeping genes (18S rRNA (18S), ubiquitin-conjugating enzyme (UBC), actin (ACT), β-tubulin (TUB), elongation factors 2 (EF2), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) examined by the quantitative real-time PCR in samples corresponding to different strains, life-cycle stages and abiotic stress treatments. Their expression stabilities were assessed by the comparative cycle threshold (C t) method and by two different software packages: geNorm and Norm-Finder. The most stable housekeeping gene is UBC and the least stable housekeeping is GADPH. Thus, it is proposed that the most appropriate internal control gene for expression analyses in P. haitanensis is UBC. The results pave the way for further gene expression analyses of different aspects of P. haitanensis biology including different strains, life-history stages and abiotic stress responses.

Key words

Pyropia haitanensis quantitative real-time PCR internal control genes gene expression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen C L, Jensen J L, Ørntoft T F. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64(15): 5245–5250CrossRefGoogle Scholar
  2. Asamizu E, Nakajima M, Kitade Y, et al. 2003. Comparison of RNA expression profiles between the two generations of Porphyra yezoensis (Rhodophyta), based on expressed sequence tag frequency analysis. Journal of Phycology, 39(5): 923–930CrossRefGoogle Scholar
  3. Blouin N A, Brodie J A, Grossma A C, et al. 2011. Porphyra: a marine crop shaped by stress. Trends Plant Sci, 16(1): 29–37CrossRefGoogle Scholar
  4. Brunner A M, Yakovlev I A, Strauss S H. 2004. Validating internal controls for quantitative plant gene expression studies. BMC Plant Biology, 4: 14CrossRefGoogle Scholar
  5. Bustin S A, Benes V, Garson J A, et al. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55(4): 611–622CrossRefGoogle Scholar
  6. Chang Ermei, Shi Shengqing, Liu Jianfeng, et al. 2012. Selection of reference genes for quantitative gene expression studies in Platycladus orientalis (Cupressaceae) using real-time PCR. PLoS ONE, 7(3): e33278CrossRefGoogle Scholar
  7. Choi S, Hwang M S, Im S, et al. 2013. Transcriptome sequencing and comparative analysis of the gametophyte thalli of Pyropia tenera under normal and high temperature conditions. Journal of Applied Phycology, 25(4): 1237–1246CrossRefGoogle Scholar
  8. Cole K, Conway E. 1975. Phenetic implications of structural features of the perennating phase in the life history of Porphyra and Bangia (Bangiophyceae, Rhodophyta). Phycologia, 14(4): 239–245CrossRefGoogle Scholar
  9. Czechowski T, Stitt M, Altmann T, et al. 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology, 139(1): 5–17CrossRefGoogle Scholar
  10. Dundas J, Ling M. 2012. Reference genes for measuring mRNA expression. Theory Biosci, 131(4): 215–223CrossRefGoogle Scholar
  11. Faccioli P, Ciceri G P, Provero P, et al. 2007. A combined strategy of “in silico” transcriptome analysis and web search engine optimization allows an agile identification of reference genes suitable for normalization in gene expression studies. Plant Molecular Biology, 63(5): 679–688CrossRefGoogle Scholar
  12. Fan Xiaolei, Fang Yongjun, Hu Songning, et al. 2007. Generation and analysis of 5318 expressed sequence tags from the filamentous sporophyte of Porphyra haitanensis (Rhodophyta). Journal of Phycology, 43(6): 1287–1294CrossRefGoogle Scholar
  13. Flintoft L. 2011. Transcriptomics: measuring gene expression in nonmodel organisms. Nature Reviews Genetics, 12(11): 742Google Scholar
  14. Guénin S, Mauriat M, Pelloux J, et al. 2009. Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. Journal of Experimental Botany, 60(2): 487–493CrossRefGoogle Scholar
  15. Guo R Y, Ki J S. 2012. Evaluation and validation of internal control genes for studying gene expression in the dinoflagellate Prorocentrum minimum using real-time PCR. European Journal of Protistology, 48(3): 199–206CrossRefGoogle Scholar
  16. Hong S Y, Seo P J, Yang M S, et al. 2008. Exploring valid reference genes for gene expression studies in Brachypodium distachyon by realtime PCR. BMC Plant Biology, 8: 112CrossRefGoogle Scholar
  17. Hu Ruibo, Fan Chengming, Li Hongyu, et al. 2009. Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Molecular Biology, 10: 93CrossRefGoogle Scholar
  18. Iskandar H M, Simpson R S, Casu R E, et al. 2004. Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Molecular Biology Reporter, 22(4): 325–337CrossRefGoogle Scholar
  19. Jain M, Nijhawan A, Tyagi A K, et al. 2006. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research Communications, 345(2): 646–651CrossRefGoogle Scholar
  20. Jian Bo, Liu Bin, Bi Yurong, et al. 2008. Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Molecular Biology, 9: 59CrossRefGoogle Scholar
  21. Kakinuma M, Coury D A, Nakamoto C, et al. 2008. Molecular analysis of physiological responses to changes in nitrogen in a marine macroalga, Porphyra yezoensis (Rhodophyta). Cell Biology and Toxicology, 24(6): 629–639CrossRefGoogle Scholar
  22. Kim B R, Nam H Y, Kim S U, et al. 2003. Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnology Letters, 25(21): 1869–1872CrossRefGoogle Scholar
  23. Kim E, Park H S, Jung Y, et al. 2011. Identification of the high-temperature response genes from Porphyra seriata (Rhodophyta) expression sequence tags and enhancement of heat tolerance of Chlamydomonas (Chlorophyta) by expression of the Porphyra htr2 gene. Journal of Phycology, 47(4): 821–828CrossRefGoogle Scholar
  24. Le Bail A, Dittami S M, de Franco P O, et al. 2008. Normalisation genes for expression analyses in the brown alga model Ectocarpus siliculosus. BMC Molecular Biology, 9: 75CrossRefGoogle Scholar
  25. Lee C, Kim J, Shin S G, et al. 2006. Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. Journal of Biotechnology, 123(3): 273–280CrossRefGoogle Scholar
  26. Libault M, Thibivilliers S, Bilgin D D, et al. 2008. Identification of four soybean reference genes for gene expression normalization. Plant Genome, 1(1): 44–54CrossRefGoogle Scholar
  27. Mukai L S, Craigie J S, Brown R G. 1981. Chemical composition and structure of the cell walls of the conchocelis and thallus phases of Porphyra tenera (Rhodophyceae). Journal of Phycology, 17(2): 192–198CrossRefGoogle Scholar
  28. Muers M. 2011. Gene expression: transcriptome to proteome and back to genome. Nat Rev Genet, 12(8): 518CrossRefGoogle Scholar
  29. Nakamura Y, Sasaki N, Kobayashi M, et al. 2013. The first symbiontfree genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis). PLoS ONE, 8(3): e57122CrossRefGoogle Scholar
  30. Nicot N, Hausman J F, Hoffmann L, et al. 2005. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany, 56(421): 2907–2914CrossRefGoogle Scholar
  31. Nikaido I, Asamizu E, Nakajima M, et al. 2000. Generation of 10, 154 expressed sequence tags from a leafy gametophyte of a marine red alga, Porphyra yezoensis. DNA Research, 7(3): 223–227CrossRefGoogle Scholar
  32. Niu Jianfeng, Gao Shenghan, Luo Yingfeng, et al. 2011. The analysis of the low coverage Porphyra yezoensis draft genome. Marine Sciences (in Chinese), 35(6): 76–81Google Scholar
  33. Paolacci A R, Tanzarella O A, Porceddu E, et al. 2009. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Molecular Biology, 10: 11CrossRefGoogle Scholar
  34. Pfaffl M W, Tichopad A, Prgomet C, et al. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnology Letters, 26(6): 509–515CrossRefGoogle Scholar
  35. Radonić A, Thulke S, Mackay I M, et al. 2004. Guideline to reference gene selection for quantitative real-time PCR. Biochemical and Biophysical Research Communications, 313(4): 856–862CrossRefGoogle Scholar
  36. Remans T, Smeets K, Opdenakker K, et al. 2008. Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta, 227(6): 1343–1349CrossRefGoogle Scholar
  37. Rosic N N, Pernice M, Rodriguez-Lanetty M, et al. 2011. Validation of housekeeping genes for gene expression studies in Symbiodinium exposed to thermal and light stress. Marine Biotechnology, 13(3): 355–365CrossRefGoogle Scholar
  38. Sahoo D, Tang X R, Yarish C. 2002. Porphyra-the economic seaweed as a new experimental system. Current Science, 83(11): 1313–1316Google Scholar
  39. Silver N, Best S, Jiang J, et al. 2006. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Molecular Biology, 7: 33CrossRefGoogle Scholar
  40. Sutherland J E, Lindstrom S C, Nelson W A, et al. 2011. A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). Journal of Phycology, 47(5): 1131–1151CrossRefGoogle Scholar
  41. Tong Zhaoguo, Gao Zhihong, Wang Fei, et al. 2009. Selection of reliable reference genes for gene expression studies in peach using realtime PCR. BMC Molecular Biology, 10: 71CrossRefGoogle Scholar
  42. Udvardi M K, Czechowski T, Scheible W R. 2008. Eleven golden rules of quantitative RT-PCR. Plant Cell, 20(7): 1736–1737CrossRefGoogle Scholar
  43. Vandesompele J, De Preter K, Pattyn F, et al. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3: RESEARCH0034CrossRefGoogle Scholar
  44. Whelan J A, Russell N B, Whelan M A. 2003. A method for the absolute quantification of cDNA using real-time PCR. Journal of Immunological Methods, 278(1–2): 261–269CrossRefGoogle Scholar
  45. Wu Xiaojie, Niu Jianfeng, Huang Aiyou, et al. 2012. Selection of internal control gene for expression studies in Porphyra haitanensis (Rhodophyta) at different life-history stages. Journal of Phycology, 48(4): 1040–1044CrossRefGoogle Scholar
  46. Xie Chaotian, Chen Changsheng, Xu Yan, et al. 2010. Construction of a genetic linkage map for Porphyra haitanensis (Bangiales, Rhodophyta) based on sequence-related amplified polymorphism and simple sequence repeat markers. Journal of Phycology, 46(4): 780–787CrossRefGoogle Scholar
  47. Yang Hui, Mao Yunxiang, Kong Fanna, et al. 2011. Profiling of the transcriptome of Porphyra yezoensis with Solexa sequencing technology. Chinese Science Bulletin, 56(20): 2119–2130CrossRefGoogle Scholar
  48. Zhang Xuecheng, Qin Song, Ma Jiahai, et al. 2005. The Genetics of Marine Algae (in Chinese). Beijing: China Agriculture Press, 184–186Google Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Bing Li
    • 1
  • Changsheng Chen
    • 1
  • Yan Xu
    • 1
  • Dehua Ji
    • 1
  • Chaotian Xie
    • 1
    Email author
  1. 1.Fisheries CollegeJimei UniversityXiamenChina

Personalised recommendations