Advertisement

Acta Oceanologica Sinica

, Volume 33, Issue 2, pp 37–44 | Cite as

Comparative analysis on transcriptome sequencings of six Sargassum species in China

  • Guoliang Wang
  • Jing Sun
  • Guiming Liu
  • Liang Wang
  • Jun Yu
  • Tao Liu
  • Shan Chi
  • Cui Liu
  • Haiyan Guo
  • Xumin Wang
  • Shuangxiu Wu
Article

Abstract

Species of Sargassum are distributed worldwide, and are of great ecological and economic importance in marine ecosystems and bioresources. In this study, transcriptome sequencings of six Sargassum species were performed for the first time using an Illumina platform. For each sample, a total of 2.1–2.5 Gb of nucleotides are collected and assembled into 69 871–116 790 scaffolds, with an average length of 410–550 bp and N50 length of 756–1 462 bp. A total of 20 512–28 684 unigenes of each sample were annotated and compared well with known gene sequences from nr database. Clusters of Orthologous Groups (COG), gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were also performed for further understanding of gene functions and regulation pathways. Gene expression levels were calculated based on RPKM values and compared among these species, especially for those genes related to carbohydrate metabolism. Cluster analyses indicated that the differences of global gene expression between S. fusiforme, which was nominated as Hizikia fusiformis before, and other five species were not significant. Further phylogenetic analysis of 108 orthologous genes confirmed that S. fusiforme had closer relationship with S. hemiphyllum rather than S. horneri. These transcriptome data provided valuable information for better understanding of genome and gene characteristics of Sargassum algae and benefiting comparative and phylogenetic studies of Phaeophyceae species in future studies.

Key words

Sargassum Sargassum fusiforme transcriptome sequencing comparative analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ale M T, Maruyama H, Tamauchi H, et al. 2011. Fucose-containing sulfated polysaccharides from brown seaweeds inhibit proliferation of melanoma cells and induce apoptosis by activation of caspase-3 in vitro. Mar Drugs, 9: 2605–2621CrossRefGoogle Scholar
  2. Carpenter E J, Cox J L. 1974. Production of pelagic Sargassum and a blue-green epiphyte in the Western Sargasso Sea. Limnol Oceanogr, 19: 429–436CrossRefGoogle Scholar
  3. Cho G Y, Rousseau F, de Reviers B, et al. 2006. Phylogenetic relationships within the Fucales (Phaeophyceae) assessed by the photosystem I coding psaA sequences. Phycologia, 45: 512–519CrossRefGoogle Scholar
  4. Cock J M, Sterck L, Rouze P, et al. 2010. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 465: 617–621CrossRefGoogle Scholar
  5. Conover J T, Sieburth J M. 1964. Effect of Sargassum distribution on its epibiota and antibacterial activity. Botanica Marina, 6: 147–157CrossRefGoogle Scholar
  6. Curtis B A, Tanifuji G, Burki F, et al. 2012. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature, 492: 59–65CrossRefGoogle Scholar
  7. Deng Yunyan, Yao Jianting, Wang Xiuliang, et al. 2012. Transcriptome sequencing and comparative analysis of Saccharina japonica (Laminariales, Phaeophyceae) under blue light induction. PLoS One, 7: e39704CrossRefGoogle Scholar
  8. Dittami S M, Scornet D, Petit J L, et al. 2009. Global expression analysis of the brown alga Ectocarpus siliculosus (Phaeophyceae) reveals large-scale reprogramming of the transcriptome in response to abiotic stress. Genome Biol, 10: R66CrossRefGoogle Scholar
  9. Ghangal R, Raghuvanshi S, Chand Sharma P. 2009. Isolation of good quality RNA from a medicinal plant seabuckthorn, rich in secondary metabolites. Plant Physiol Biochem, 47: 1113–1115CrossRefGoogle Scholar
  10. Huynh Truonggiang, Yeh Sutuen, Lina Yongchin, et al. 2011. White shrimp Litopenaeus vannamei immersed in seawater containing Sargassum hemiphyllum var. chinense powder and its extract showed increased immunity and resistance against Vibrio alginolyticus and white spot syndrome virus. Fish Shellfish Immunol, 31(2): 286–293CrossRefGoogle Scholar
  11. Johnson M T, Carpenter E J, Tian Zhijian, et al. 2012. Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes. PLoS One, 7: e50226CrossRefGoogle Scholar
  12. Li Tianyong, Ren Lei, Zhou Guan, et al. 2012. A suitable method for extracting total RNA from red algae. Transactions of Oceanology and Limnology (in Chinese), 4: 64–71Google Scholar
  13. Makinen V, Salmela L, Ylinen J. 2012. Normalized N50 assembly metric using gap-restricted co-linear chaining. BMC Bioinformatics, 13: 255CrossRefGoogle Scholar
  14. Mattio L, Payri C E. 2009. Taxonomic revision of Sargassum species (Fucales, Phaeophyceae) from New Caledonia based on morphological and molecular analyses(1). J Phycol, 45: 1374–1388CrossRefGoogle Scholar
  15. Mortazavi A, Williams B A, McCue K, et al. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 5: 621–628CrossRefGoogle Scholar
  16. Oak J H, Suh Y, Lee I K. 2002. Phylogenetic relationships of Sargassum subgenus Bactrophycus (Sargassaceae, Phaeophyceae) inferred from rDNA ITS Sequences. Algae, 17: 235–247CrossRefGoogle Scholar
  17. Phillips N E, Smith C M, Morden C W. 2005. Testing systematic concepts of Sargassum (Fucales,Phaeophyceae) using portions of the rbcLS operon. Phycol Res, 53: 1–10CrossRefGoogle Scholar
  18. Preeprame S, Hayashi K, Lee J B, et al. 2001. A novel antivirally active fucan sulfate derived from an edible brown alga, Sargassum horneri. Chem Pharm Bull (Tokyo), 49: 484–485CrossRefGoogle Scholar
  19. Price D C, Chan C X, Yoon H S, et al. 2012. Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science, 335: 843–847CrossRefGoogle Scholar
  20. Rivera M, Scrosati R. 2006. Population dynamics of Sargassum lapazeanum (Fucales, Phaeophyta) from the Gulf of California, Mexico. Phycologia, 45: 178–189CrossRefGoogle Scholar
  21. Southichak B, Nakano K, Nomura M, et al. 2008. Marine macroalga Sargassum horneri as biosorbent for heavy metal removal: roles of calcium in ion exchange mechanism. Water Sci Technol, 58: 697–704CrossRefGoogle Scholar
  22. Stamatakis A, Aberer A J, Goll C, et al. 2012. RAxML-Light: a tool for computing terabyte phylogenies. Bioinformatics, 28: 2064–2066CrossRefGoogle Scholar
  23. Stiger V, Horiguchi T, Yoshida T, et al. 2003. Phylogenetic relationships within the genus Sargassum (Fucales, Phaeophyceae), inferred from ITS-2 nrDNA, with an emphasis on the taxonomic subdivision of the genus. Phycol Res, 51: 1–10CrossRefGoogle Scholar
  24. Tatusov R L, Fedorova N D, Jackson J D, et al. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics, 4: 41CrossRefGoogle Scholar
  25. Wang Guoliang, Zhao Ge, Feng Yanbin, et al. 2010. Cloning and comparative studies of seaweed trehalose-6-phosphate synthase genes. Mar Drugs, 8: 2065–2079CrossRefGoogle Scholar
  26. Wong C K, Ooi V E, Ang P O. 2000. Protective effects of seaweeds against liver injury caused by carbon tetrachloride in rats. Chemosphere, 41: 173–176CrossRefGoogle Scholar
  27. Wong C L, Ng S M, Phang S M. 2007. Use of RAPD in differentiation of selected species of Sargassum (Sargassaceae, Phaeophyta). J Appl Phycol, 19: 771–781CrossRefGoogle Scholar
  28. Xu Jia, Aileni M, Abbagani S, et al. 2010. A reliable and efficient method for total rna isolation from various members of spurge family (Euphorbiaceae). Phytochem Anal, 21: 395–398CrossRefGoogle Scholar
  29. Yao Jianting, Fu Wandong, Wang Xiuliang, et al. 2008. Improved RNA isolation from Laminaria japonica Aresch (Laminariaceae, Phaeophyta). J Appl Phycol, 21: 233–238CrossRefGoogle Scholar
  30. Zdobnov E M, Apweiler R. 2001. InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics, 17: 847–848CrossRefGoogle Scholar
  31. Zeng Chengkui. 2009. Seaweeds in Bohai Sea and Yellow Sea of China (in Chinese). Beijing: Sicence Press, 363–372Google Scholar
  32. Zou Dinghui, Gao Kunshan, Luo Hanjin. 2011. Short- and long-term effects of elevated CO2 on photosynthesis and respiration in the marine macroalga Hizikia Fusiformis (Sargassaceae, Phaeophyta) grown at low and high N supplies. J Phycol, 47: 87–97CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Guoliang Wang
    • 1
    • 3
  • Jing Sun
    • 1
    • 3
    • 4
  • Guiming Liu
    • 1
    • 3
  • Liang Wang
    • 1
    • 3
    • 4
  • Jun Yu
    • 1
    • 3
  • Tao Liu
    • 2
  • Shan Chi
    • 2
  • Cui Liu
    • 2
  • Haiyan Guo
    • 1
    • 3
  • Xumin Wang
    • 1
    • 3
  • Shuangxiu Wu
    • 1
    • 3
  1. 1.CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
  2. 2.College of Marine Life ScienceOcean University of ChinaQingdaoChina
  3. 3.Beijing Key Laboratory of Functional Genomics for Dao-di Herbs, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations