Acta Oceanologica Sinica

, Volume 33, Issue 1, pp 42–47 | Cite as

Estimation of eddy heat transport in the global ocean from Argo data

  • Zhiwei Zhang
  • Yisen Zhong
  • Jiwei Tian
  • Qingxuan Yang
  • Wei Zhao


The Argo data are used to calculate eddy (turbulence) heat transport (EHT) in the global ocean and analyze its horizontal distribution and vertical structure. We calculate the EHT by averaging all the ν′,T′ profiles within each 2° × 2° bin. The velocity and temperature anomalies are obtained by removing their climatological values from the Argo “instantaneous” values respectively. Through the Student’s t -test and an error evaluation, we obtained a total of 87% Argo bins with significant depth-integrated EHTs (D-EHTs). The results reveal a positive-and-negative alternating D-EHT pattern along the western boundary currents (WBC) and Antarctic Circumpolar Current (ACC). The zonally-integrated D-EHT (ZI-EHT) of the global ocean reaches 0.12 PW in the northern WBC band and −0.38 PW in the ACC band respectively. The strong ZI-EHT across the ACC in the global ocean is mainly caused by the southern Indian Ocean. The ZI-EHT in the above two bands accounts for a large portion of the total oceanic heat transport, which may play an important role in regulating the climate. The analysis of vertical structures of the EHT along the 35°N and 45°S section reveals that the oscillating EHT pattern can reach deep in the northern WBC regions and the Agulhas Return Current (ARC) region. It also shows that the strong EHT could reach 600 m in the WBC regions and 1 000 m in the ARC region, with the maximum mainly located between 100 and 400 m depth. The results would provide useful information for improving the parameterization scheme in models.

Key words

eddy heat transport Argo mesoscale eddy global ocean 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chen Gengxin, Gan Jianping, Xie Qiang, et al. 2012. Eddy heat and salt transports in the South China Sea and their seasonal modulations. J Geophys Res, 117: C05021, doi: 10.1029/2011JC007724Google Scholar
  2. Chinn B S, Gille S T. 2007. Estimating eddy heat flux from float data in the North Atlantic: The impact of temporal sampling interval. J Atmos Ocean Tech, 24: 923–934CrossRefGoogle Scholar
  3. Cressman G P. 1959. An operational objective analysis system. Mon Weather Rev, 87: 367–374CrossRefGoogle Scholar
  4. Gille S T. 2003. Float observations of the Southern Ocean. Part II: Eddy fluxes. J Phys Oceanogr, 33: 1182–1196Google Scholar
  5. Hausmann U, Czaja A. 2012. The observed signature of mesoscale eddies in sea surface temperature and the associated heat transport. Deep-Sea Research: Part I, 70: 60–72CrossRefGoogle Scholar
  6. Jayne S R, Marotzke J. 2002. The oceanic eddy heat transport. J Phys Oceanogr, 32: 3328–3345CrossRefGoogle Scholar
  7. Killworth P. 1998. Eddy parameterization in large scale flow. In: Chassignet EP, Verron J, eds. Ocean Modeling and Parameterization. Dordrecht: Kluwer Acad. Press, 253–268CrossRefGoogle Scholar
  8. Lee T, Fukumori I, Tang B. 2004. Temperature advection: internal versus external processes. J Phys Oceanogr, 34: 1936–1944CrossRefGoogle Scholar
  9. Marshall J, Shutts G. 1981. A note on rotational and divergent eddy fuxes. J Phys Oceanogr, 11: 1677–1680CrossRefGoogle Scholar
  10. Meijers A J, Bindoff N L, Roberts J L. 2007. On the total, mean, and eddy heat and freshwater transports in the Southern Hemisphere of a global ocean model. J Phys Oceanogr, 37: 277–295CrossRefGoogle Scholar
  11. Montgomery R B. 1974. Comment on’ seasonal variability of the Florida Current’ by Niiler and Richardson. J Mar Res, 32: 533–535Google Scholar
  12. Phillips H E, Rintoul S R. 2000. Eddy variability and energetic from direct current measurements in the Antarctic Circumpolar Current south of Australia. J Phys Oceanogr, 30: 3050–3076CrossRefGoogle Scholar
  13. Qiu B, Chen S. 2005. Eddy-induced heat transport in the subtropical North Pacific from Argo, TMI, and altimetry measurements. J Phys Oceanogr, 35: 458–473CrossRefGoogle Scholar
  14. Roemmich D, Gilson J, Cornuelle B, et al. 2001. Mean and time-varying meridional transport of heat at tropical/subtropical boundary of the North Pacific Ocean. J Geophys Res, 106: 8957–8970CrossRefGoogle Scholar
  15. Souza J M A C, de Boyer Montégut C, Cabanes C, et al. 2011. Estimation of the Agulhas ring impacts on meridional heat fluxes and transport using ARGO floats and satellite data. Geophys Res Lett, 38: L21602, doi: 10.1029/2011GL049359CrossRefGoogle Scholar
  16. Stammer D. 1998. On eddy characteristics, eddy transports, and mean flow properties. J Phys Oceanogr, 28: 727–739CrossRefGoogle Scholar
  17. Trenberth K E, Carron J M. 2001. Estimates of atmosphere and ocean meridional heat transports. J Climate, 14: 3433–3442CrossRefGoogle Scholar
  18. Volkov D L, Lee T, Fu L L. 2008. Eddy-induced meridional heat transport in the ocean. Geophys Res Lett, 35: L20601, doi: 10.1029/2008GL035490CrossRefGoogle Scholar
  19. Walkden G J, Heywood K J, Stevens D P. 2008. Eddy heat fluxes from direct current measurements of the Antarctic Polar Front in Shag Rocks Passage. Geophys Res Lett, 35: L06602, doi: 10.1029/2007GL032767CrossRefGoogle Scholar
  20. Wang Xidong, Li Wei, Qi Yiquan, et al. 2012. Heat, salt and volume transports by eddies in the vicinity of the Luzon Strait. Deep Sea Res Part I, 61: 21–33CrossRefGoogle Scholar
  21. Wunsch C. 1999. Where do ocean eddy heat fluxes matter? J Geophys Res 104: 13235–13249CrossRefGoogle Scholar
  22. Yim B Y, Noh Y, You S H, et al. 2010. The vertical structure of eddy heat transport simulated by an eddy-resolving OGCM. J Phys Oceanogr, 40: 340–353CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Zhiwei Zhang
    • 1
  • Yisen Zhong
    • 2
  • Jiwei Tian
    • 1
  • Qingxuan Yang
    • 1
  • Wei Zhao
    • 1
  1. 1.Key Laboratory of Physical OceanographyOcean University of ChinaQingdaoChina
  2. 2.School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations