Acta Oceanologica Sinica

, Volume 32, Issue 8, pp 1–11 | Cite as

A comparison of two global ocean-ice coupled models with different horizontal resolutions

Article

Abstract

A global eddy-permitting ocean-ice coupled model with a horizontal resolution of 0.25° by 0.25° is established on the basis of Modular Ocean Model version 4 (MOM4) and Sea Ice Simulator (SIS). Simulation results are compared with those of an intermediate resolution ocean-ice coupled model with a horizontal resolution of about 1° by 1°. The results show that the simulated ocean temperature, ocean current and sea ice concentration from the eddy-permitting model are better than those from the intermediate resolution model. However, both the two models have the common problem of ocean general circulation models (OGCMs) that the majority of the simulated summer sea surface temperature (SST) is too warm while the majority of the simulated subsurface summer temperature is too cold. Further numerical experiments show that this problem can be alleviated by incorporating the non-breaking surface wave-induced vertical mixing into the vertical mixing scheme for both eddy-permitting and intermediate resolution models.

Key words

eddy-permitting model intermediate resolution model non-breaking surface wave-induced vertical mixing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amante C, Eakins BW. 2009. ETOPO1 1 Arc-minute Global Relief Model: Procedures, Data sources and Analysis. Boulder, Colorado: US Dept of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, Marine Geology and Geophysics DivisionGoogle Scholar
  2. Cavalieri D J, Parkinson C L, Gloersen P, et al. 1996. Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data, 1979–2007. Boulder, Colorado: National Snow and Ice Data Center. Digital media. Updated 2008Google Scholar
  3. Chassignet E P, Garraffo Z D. 2001. Viscosity Parameterization and the Gulf Stream separation. In: Muller P, Henderson D, eds. Aha Huliko’a Hawaiian Winter Workshop. Hawaii: University of Hawaii, 37–41Google Scholar
  4. Dengg J, Beckmann A, Gerdes R. 1996. The gulf stream separation problem. The warmwatersphere of the North Atlantic Ocean. Berlin: Gebruder Borntraeger, 253–290Google Scholar
  5. ETOPO5. 1986. Relief map of the earth’s surface. EOS, 67: 121Google Scholar
  6. Ezer T. 2000. On the seasonal mixed layer simulated by a basin-scale oceanmodel and the Mellor-Yamada turbulence scheme. J Geophys Res, 105(C7): 16843–16855CrossRefGoogle Scholar
  7. Griffies S M, Biastoch A, Böning C, et al. 2009. Coordinated ocean-ice reference experiments (COREs). Ocean Modelling, 26(1–2): 1–46CrossRefGoogle Scholar
  8. Griffies S M, Hallberg R W. 2000. Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Monthly Weather Review, 128(8): 2935–2946CrossRefGoogle Scholar
  9. Griffies S M, Harrison M J, Pacanowski R C, et al. 2004. A technical guide to MOM4. GFDL Ocean Group Tech Rep, 5: 371Google Scholar
  10. Huang C J, Qiao F, Song Z, et al. 2011. Improving simulations of the upper ocean by inclusion of surface waves in the Mellor-Yamada turbulence scheme. J Geophys Res, 116: C01007CrossRefGoogle Scholar
  11. Hurlburt H E, Metzger E J, Sprintall J, et al. 2011. Circulation in the Philippine Archipelago simulated by 1/12° and 1/25° global HY-COM and EAS NCOM. Oceanography, 24(1): 28–47CrossRefGoogle Scholar
  12. Kantha L H, Clayson C A. 1994. An improved mixed layer model for geophysical applications. J Geophys Res, 99(C12): 25235–25266CrossRefGoogle Scholar
  13. Large W, Doney S. 1994. Oceanic vertical mixing: a review and a model. Reviews of Geophysics, 32: 363–403CrossRefGoogle Scholar
  14. Levitus S, Boyer T. 1994. NOAA Atlas NESDIS 4, World Ocean Atlas 1994, Vol. 4: Temperature. Nat Environ Satellite, Data, and Inf Serv, Nat Oceanic and Atmos Admin, US Dep of Comm Washington, DCGoogle Scholar
  15. Lu J, Qiao F, Wei Z, et al. 2008. Study on distribution of mixed layer depth in the world ocean in summer. Advances in Marine Science (in Chinese), 26(2): 145–155Google Scholar
  16. Maltrud M E, McClean J L. 2005. An eddy resolving global 1/10 ocean simulation. Ocean Modelling, 8(1–2): 31–54CrossRefGoogle Scholar
  17. Martin P J. 1985. Simulation of the Mixed Layer at OWS November and Papa With Several Models. J Geophys Res, 90(C1): 903–916CrossRefGoogle Scholar
  18. Masumoto Y, Sasaki H, Kagimoto T, et al. 2004. A fifty-year eddy-resolving simulation of the world ocean: preliminary outcomes of OFES (OGCM for the earth simulator). J Earth Simulator, 1: 35–56Google Scholar
  19. McAvaney B J, Covey C, Joussaume S, et al. 2001. Model evalution. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Repor. Cambridge: Cambridge University Press, 881Google Scholar
  20. Meier W, Fetterer F, Knowles K, et al. 2006. Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data, 2008. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media. Updated quarterlyGoogle Scholar
  21. Murray R J. 1996. Explicit generation of orthogonal grids for ocean models. Journal of Computational Physics, 126: 251–273CrossRefGoogle Scholar
  22. Qiao F, Yang Y, Xia C, et al. 2008. The role of surface waves in the ocean mixed layer. Acta Oceanologica Sinica, 27(3): 30–37Google Scholar
  23. Qiao F, Yuan Y, Ezer T, et al. 2010. A three-dimensional surface wave-ocean circulation coupled model and its initial testing. Ocean Dynamics, 60(5): 1339–1355CrossRefGoogle Scholar
  24. Qiao F, Yuan Y, Yang Y, et al. 2004. Wave induced mixing in the upper ocean: distribution and application to a global ocean circulation model. Geophys Res Lett, 31: L11303, doi: 10.1029/2004GL019824CrossRefGoogle Scholar
  25. Reynolds R W, Smith T M, Liu C, et al. 2007. Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate, 22: 5473–5496CrossRefGoogle Scholar
  26. Roeske F. 2001. An Atlas of surface fluxes based on the ECMWF reanalysis: a climatological dataset to force global ocean general circulation models. Hamburg: Max-Planck-Institut fuer Meteorologie, 270Google Scholar
  27. Shu Q, Qiao F, Song Z, et al. 2011. Improvement of MOM4 by including surface wave-induced vertical mixing. Ocean Modelling, 40: 42–51CrossRefGoogle Scholar
  28. Smith R D, Maltrud M E, Bryan F O, et al. 2000. Numerical simulation of the North Atlantic Ocean at 1/10. J Phs Oceanogr, 30: 1532–1561CrossRefGoogle Scholar
  29. Wang Y, Qiao F, Fang G, et al. 2010. Application of wave-induced vertical mixing to the K profile parameterization scheme. J Geophys Res, 115: C09014, doi: 10.1029/2009JC005856CrossRefGoogle Scholar
  30. Winton M. 2000. A reformulated three-layer sea ice model. Journal of Atmospheric and Oceanic Technology, 17(4): 525–531CrossRefGoogle Scholar
  31. Xia C, Qiao F, Yang Y, et al. 2006. Three-dimensional structure of the summertime circulation in the Yellow Sea from a wave-tide-circulation coupled model. J Geophys Res, 111: C11S03, doi: 10.1029/2005JC003218CrossRefGoogle Scholar
  32. Yang Y, Qiao F, Zhao W, et al. 2005. MASNUM ocean wave model in spherical coordinate and its application. Acta Oceanologica Sinica (in Chinese), 27: 1–7Google Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Qi Shu
    • 1
    • 2
    • 3
  • Fangli Qiao
    • 2
    • 3
  • Zhenya Song
    • 2
    • 3
  • Xunqiang Yin
    • 2
    • 3
  1. 1.College of Physical and Environmental OceanographyOcean University of ChinaQingdaoChina
  2. 2.First Institute of OceanographyState Oceanic AdministrationQingdaoChina
  3. 3.Key Laboratory of Marine Science and Numerical ModelingState Oceanic AdministrationQingdaoChina

Personalised recommendations