Acta Oceanologica Sinica

, Volume 32, Issue 7, pp 66–77 | Cite as

An effective method for improving the accuracy of Argo objective analysis

  • Chunling Zhang
  • Jianping Xu
  • Xianwen Bao
  • Zhenfeng Wang


Based on the optimal interpolation objective analysis of the Argo data, improvements are made to the empirical formula of a background error covariance matrix widely used in data assimilation and objective analysis systems. Specifically, an estimation of correlation scales that can improve effectively the accuracy of Argo objective analysis has been developed. This method can automatically adapt to the gradient change of a variable and is referred to as “gradient-dependent correlation scale method”. Its effect on the Argo objective analysis is verified theoretically with Gaussian pulse and spectrum analysis. The results of one-dimensional simulation experiment show that the gradient-dependent correlation scales can improve the adaptability of the objective analysis system, making it possible for the analysis scheme to fully absorb the shortwave information of observation in areas with larger oceanographic gradients. The new scheme is applied to the Argo data objective analysis system in the Pacific Ocean. The results are obviously improved.

Key words

gradient-dependent correlation scale background error covariance optimal interpolation spectrum analysis Argo data 


  1. Akima H. 1970. A new method for interpolation and smooth curve fitting based on local procedures. J Assoc Comput Mech, 17: 589–602CrossRefGoogle Scholar
  2. Behrinoer David W, Ji Ming, Leetmaa Ants. 1998. An improved coupled method for ENSO prediction and implications for ocean initialization: Part I. The ocean data assimilation system. Monthly Weather Review, 126: 1013–1021CrossRefGoogle Scholar
  3. Bonekamp H G, Oldenborgh J V, Burgers G. 2001. Variational assimilation of TAO and XBT data in the HOPE OGCM: adjusting the surface fluxes in the tropical ocean. J Geophys Res, 106: 16693–16709CrossRefGoogle Scholar
  4. Carton J A, Chepurin G, Cao X. 2000. A simple ocean data assimilation analysis of the global upper ocean 1950–95: Part I. Methodology. J Phys Oceanogr, 30: 294–309CrossRefGoogle Scholar
  5. Dean Roemmich, Gilson John. 2009. The 2004–2008 mean and annual cycle of temperature, salinity and steric height in the global ocean from the Argo program. Progress in Oceanography, 82: 81–100CrossRefGoogle Scholar
  6. Dee D P, Silva A Da. 1998. Data assimilation in the presence of forecast bias. Quart J Roy Meteor Soc, 124: 269–295CrossRefGoogle Scholar
  7. Derber J, Rosati A. 1989. A global oceanic data assimilation system. Journal of Physical Oceanography, 19: 1333–1347CrossRefGoogle Scholar
  8. Fu Weiwei, Zhou Guangqing, Wang Huijun. 2004. Ocean data assimilation with background error covariance: derived from OGCM outputs. Advances in Atmospheric Sciences, 21(2): 181–192CrossRefGoogle Scholar
  9. Gaillard F. 2010. ISAS-Tool Version 5.3: Method and Configuration. Brest: Laboratoere de Physique de Oceans, 12Google Scholar
  10. Gandin L S. 1963. Objective analysis of meteorological fields. Leningrad: Gidromet, 242Google Scholar
  11. Gao Li, Liu Yuguang, Rong Zengrui. 2007. The sea level anomaly and analysis of mesoscale eddies in Kuroshio extensions. Transactions of Oceanology and Limnology, 1: 14–23Google Scholar
  12. Gaspari G, John S E. 1999. Construction of correlation functions in two and three dimensions. Q J RMeteorol Soc, 125: 723–757CrossRefGoogle Scholar
  13. He Zhongjie, Xie Yuanfu, Li Wei. 2007. Application of the sequential three-dimensional variation method to assimilating SST in a global ocean model. Journal of Atmospheric and oceanic Technology, 25: 1018–1033CrossRefGoogle Scholar
  14. Hollingsworth A, Lonnberg P. 1986. The statistical structure of short-range forecast errors as determined from radiosonde data: Part I. The wind field. Tellus, 38A: 111–136CrossRefGoogle Scholar
  15. Kenneth H, Bergman. 1979. Multivariate analysis of temperature and wind using optimums interpolation. Mon Wea Rev, 107(11): 1423–1444CrossRefGoogle Scholar
  16. Kuragano T, Kamachi M. 2000. Global statistical space-time scales of oceanic variability estimated from the TOPEX/POSEIDON altimeter data. J Geophys Res, 105: 955–974CrossRefGoogle Scholar
  17. Li Wei, Xie Yuanfu, He Zhongjie, et al. 2008. Application of the multi-grid data assimilation scheme to the China seas’ temperature forecast. Journal of Atmospheric and Oceanic Technology, 25: 2106–2116CrossRefGoogle Scholar
  18. Meyers G H, Phillips N S, Springtall J. 1991. Space and timescales for optimal interpolation of temperature tropical Pacific. Progr Oceanogr, 28: 189–218CrossRefGoogle Scholar
  19. Reynolds R W, Smith T M. 1994. Improved global sea surface temperature analysis. J Clim, 6: 929–948CrossRefGoogle Scholar
  20. Riishogaard L P. 1998. A direct way of specifying flow-dependent background error correlations for meteorological analysis system. Tellus, 50A: 42–57Google Scholar
  21. Shigeki H, Tsuyoshi O, Tomoaki N. 2008. A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep Res Dev, 8: 47–59CrossRefGoogle Scholar
  22. Weaver A, Courtier P. 2001. Correlation modeling on the sphere using a generalized diffusion equation. Q J RMeteorol Soc, 127: 1815–1846CrossRefGoogle Scholar
  23. Xie Y, Koch S E, McGinley J A, et al. 2010. A space-time multi-scale analysis system: a sequential variational analysis approach. Mon Wea Rev, 139: 1224–1239CrossRefGoogle Scholar
  24. Xu Luping. 2007. Digital Image Processing (in Chinese). Beijing: Science Press, 80Google Scholar
  25. Zhang Weimin, Cao Xiaoqun, Xiao Qingnong, et al. 2010. Variational data assimilation using wavelet background error covariance: initialization of Typhoon Kaemi (2006). Journal of Tropical Meteorology, 16(4): 334–340Google Scholar
  26. Zhuang Zhaorong, Xue Jishan, Zhuang Shiyu, et al. 2006. Research for background error statistical analysis of geopotential height. Atmospheric Science (in Chinese), 30(3): 533–544Google Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chunling Zhang
    • 1
    • 2
  • Jianping Xu
    • 1
    • 2
    • 3
  • Xianwen Bao
    • 1
  • Zhenfeng Wang
    • 4
  1. 1.Institute of Marine EnvironmentOcean University of ChinaQingdaoChina
  2. 2.Second Institute of OceanographyState Oceanic AdministrationHangzhouChina
  3. 3.State Key Laboratory of Satellite Oceanography Environment Dynamics, Second Institute of OceanographyState Oceanic AdministrationHangzhouChina
  4. 4.Marine Hydrologic Meteorological CenterCommand of Navy East China Sea FleetNingboChina

Personalised recommendations