Advertisement

Effects of virus infection on expression of cell cycle regulatory proteins in the unicellular marine algae Emiliania huxleyi

  • Jingwen Liu
  • Gunnar Bratbak
  • Tianling Zheng
  • Runar Thyrhaug
Article

Abstract

The authors have investigated the biochemical events by which marine algal virus infection induces cell cycle arrest. The key G2/M-phase regulatory proteins are analyzed by immunobloting in unicellular Emiliania huxleyi, suggesting that virus induced cell cycle arrest is related with virus’s effect on cyclins and cyclin dependent kinases. E. huxleyi virus (EhV) represses Cdc2/cyclinB complex activity by inhibiting the activity of Cdc2 kinase in a phosphorylation-related manner, blocking host cells G2/M checkpoint. Dephosphorylated / inactive Cdc25C combined with up-regulation of Wee1 expression at early infect period appears to be important mechanisms by which EhV represses Cdc2/cyclinB complex activity that is required for entry into M phase. This study has allowed us to confirm that algal virus infection leads to selective activation or inhibition of certain cell-cycle factors, which may play a significant role in establishing a more efficient environment for viral gene expression and DNA replication.

Key words

marine algal virus cell cycle regulators expression Emiliania huxleyi 

References

  1. Advani S J, Brandimarti R, Weichselbaum R R, et al. 2000. The Disappearance of cyclins A and B and the increase in activity of the G2/M-phase cellular kinase cdc2 in herpes simplex virus 1-infected cells require expression of the α22/US1.5 and UL13 viral genes. J Virol, 74: 8–15CrossRefGoogle Scholar
  2. Balch W M, Holligan P M, Kilpatrick K A. 1992. Calcification, photosynthesis and growth of the bloom-forming coccolithophore, Emiliania huxleyi. Continental Shelf Res, 12: 1353–1374CrossRefGoogle Scholar
  3. Borgne A, Ostvold A C, Flament S, et al. 1999. Intra-M phase-promoting factor phosphorylation of cyclin B at the prophase/metaphase transition. J Biol Chem, 274: 11977–11986CrossRefGoogle Scholar
  4. Bratbak G, Egge J K, Heldal M. 1993. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar Ecol Prog Ser, 93: 39–48CrossRefGoogle Scholar
  5. Brussaard C P D. 2004. Viral control of phytoplankton populations. J Eukaryot Microbiol, 51: 125–138CrossRefGoogle Scholar
  6. Carpenter E J, Lin Senjie, Chang J. 1998. Phytoplankton growth studies by cell cycle analysis. In: Cooksey K E, ed. Some Molecular Approaches to the Study of the Ocean. London: Chapman & Hall, 227–245CrossRefGoogle Scholar
  7. Castberg T, Thyrhaug R, Larsen A, et al. 2002. Isolation and characterization of virus infecting Emiliania huxleyi (Haptophyceae). J Phycol, 38: 767–774CrossRefGoogle Scholar
  8. Falkowski P G, Katz M E, Knoll A H, et al. 2004. The evolution of modern eukaryotic phytoplankton. Science, 305: 354–360CrossRefGoogle Scholar
  9. Heuvel S V D, Harlow E. 1993. Distinct roles for cyclin-dependent kinases in cell cycle control. Science, 262:2050–2054CrossRefGoogle Scholar
  10. Kang Dongming, Chen J, Wong J, et al. 2002. The checkpoint protein Chfr is a ligase that ubiquitinates Plk1 and inhibits Cdc2 at the G2 to M transition. J Cell Biol, 156: 249–259CrossRefGoogle Scholar
  11. Kumagai A, Dunphy W G. 1992. Regulation of the cdc25 protein during the cell cycle in Xenopus extracts. Cell, 70: 139–151CrossRefGoogle Scholar
  12. Lin Senjie, Carpenter E J, Chang J. 1996. Detection of p34cdc2- and cyclin B-like proteins in Dunaliella tertiolecta (Chlorophyceae). Mar Biol, 125(3): 603–610Google Scholar
  13. Liu Feng, Rothblum-Oviatt C, Ryan C E, et al. 1999. Overproduction of human Myt1 Kinase induces a G2 cell cycle delay by interfering with the intracellular trafficking of Cdc2-Cyclin B1 complexes. Mol Cell Biol, 19: 5113–5123Google Scholar
  14. Liu Jingwen, Jiao Nianzhi, Hong Huasheng, et al. 2005. Proliferating cell nuclear antigen (PCNA) as a marker of cell proliferation in the marine dinoflagellate Prorocentrum donghaiense Lu and the green alga Dunaliella salina Teodoresco. J Appl Phycol, 17: 323–330CrossRefGoogle Scholar
  15. Michael W M, Newport J. 1998. Coupling of mitosis to the completion of S phase through Cdc34-mediated degradation of Wee1. Science, 282: 1886–1889CrossRefGoogle Scholar
  16. Nurse P. 1990. Universal control mechanism regulating onset of M-phase. Nature, 344: 503–508CrossRefGoogle Scholar
  17. O’connell M J, Walworth N C, Carr A M. 2000. The G2-phase DNA-damage checkpoint. Trends Cell Biol, 10: 296–303CrossRefGoogle Scholar
  18. Page A M, Hieter P. 1999. The anaphase-promoting complex: new subunits and regulators. Annu Rev Biochem, 68: 583–609CrossRefGoogle Scholar
  19. Perry J A, Kornbluth S. 2007. Cdc25 and Wee1: analogous opposites? Cell Division, 2: 1–12CrossRefGoogle Scholar
  20. Rohwer F, Thurber R V. 2009. Viruses manipulate the marine environment. Nature, 459: 207–212CrossRefGoogle Scholar
  21. Schroeder D C, Oke J, Malin G, et al. 2002. Coccolithovirus (Phycodnaviridae): characterisation of a new large dsDNA algal virus that infects Emiliana huxleyi. Arch Virol, 147: 1685–1698CrossRefGoogle Scholar
  22. Suttle C A. 2005. Viruses in the sea. Nature, 437: 356–361CrossRefGoogle Scholar
  23. Thyrhaug R, Larsen A, Brussaard C P D, et al. 2002. Cell cycle dependent virus production in marine phytoplankton. J phycol, 38: 338–343CrossRefGoogle Scholar
  24. Wahlund T M, Hadaegh A R, Clark R, et al. 2005. Emiliania huxleyi CCMP1516 main genome assembly v1.0. http://genome.jgi psf.org/Emihu1/Emihu1.home.html
  25. Wilson WH, Schroeder D C, Allen MJ, et al. 2005. Complete genome sequence and lytic phase transcription profile of a Coccolithovirus. Science, 309: 1090–1092CrossRefGoogle Scholar
  26. Wolf A, Zheng Tianling, Witzel K P, et al. 2004. Impact of initial phage/host ratio and nutrient addition on coexistence in a phage-host system. Aquatic Microbial Ecology, 35: 131–139CrossRefGoogle Scholar
  27. Wommack K E, Colwell R R. 2000. Virioplankton: Viruses in aquatic Ecosystems. Microbiol Mol Biol Rev, 64: 69–114CrossRefGoogle Scholar
  28. Yuan Huidong, Kamata M, Xie Yiming, et al. 2004. Increased levels of Wee-1 kinase in G2 are necessary for Vpr- and gamma irradiation-induced G2 arrest. J Virol, 78: 8183–8190CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jingwen Liu
    • 1
  • Gunnar Bratbak
    • 2
  • Tianling Zheng
    • 3
    • 4
  • Runar Thyrhaug
    • 2
  1. 1.Bioengineering College of Jimei UniversityXiamenChina
  2. 2.Department of MicrobiologyUniversity of BergenBergenNorway
  3. 3.Key Laboratory of MOE for Coast and Wetland Ecosystem, School of Life SciencesXiamen UniversityXiamenChina
  4. 4.State Key Laboratory of Marine Environmental Sciences of Xiamen UniversityXiamenChina

Personalised recommendations