Advertisement

The large N limit of OPEs in symmetric orbifold CFTs with \( \mathcal{N} \) = (4, 4) supersymmetry

  • Thomas de BeerEmail author
  • Benjamin A. Burrington
  • Ian T. Jardine
  • A.W. Peet
Open Access
Regular Article - Theoretical Physics

Abstract

We explore the OPE of certain twist operators in symmetric product (SN) orbifold CFTs, extending our previous work [1] to the case of \( \mathcal{N} \) = (4, 4) supersymmetry. We consider a class of twist operators related to the chiral primaries by spectral flow parallel to the twist. We conjecture that at large N, the OPE of two such operators contains only fields in this class, along with excitations by fractional modes of the superconformal currents. We provide evidence for this by studying the coincidence limits of two 4-point functions to several non-trivial orders. We show how the fractional excitations of the twist operators in our restricted class fully reproduce the crossing channels appearing in the coincidence limits of the 4-point functions.

Keywords

AdS-CFT Correspondence Conformal Field Theory Gauge-gravity correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. 1.
    B.A. Burrington, I.T. Jardine and A.W. Peet, The OPE of bare twist operators in bosonic S Norbifold CFTs at large N, JHEP08 (2018) 202 [arXiv:1804.01562] [INSPIRE].ADSzbMATHGoogle Scholar
  2. 2.
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  3. 3.
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP10 (2009) 079 [arXiv:0907.0151] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. 5.
    A. Belin, C.A. Keller and A. Maloney, String universality for permutation orbifolds, Phys. Rev.D 91 (2015) 106005 [arXiv:1412.7159] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. 6.
    F.M. Haehl and M. Rangamani, Permutation orbifolds and holography, JHEP03 (2015) 163 [arXiv:1412.2759] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  7. 7.
    N. Benjamin, M.C.N. Cheng, S. Kachru, G.W. Moore and N.M. Paquette, Elliptic genera and 3d gravity, Annales Henri Poincaré17 (2016) 2623 [arXiv:1503.04800] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  8. 8.
    A. Belin, C.A. Keller and A. Maloney, Permutation orbifolds in the large N limit, Annales Henri Poincaré (2016) 1 [arXiv:1509.01256] [INSPIRE].
  9. 9.
    N. Benjamin, S. Kachru, C.A. Keller and N.M. Paquette, Emergent space-time and the supersymmetric index, JHEP05 (2016) 158 [arXiv:1512.00010] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  10. 10.
    A. Belin, J. de Boer, J. Kruthoff, B. Michel, E. Shaghoulian and M. Shyani, Universality of sparse d > 2 conformal field theory at large N, JHEP03 (2017) 067 [arXiv:1610.06186] [INSPIRE].
  11. 11.
    A. Belin, Permutation orbifolds and chaos, JHEP11 (2017) 131 [arXiv:1705.08451] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  12. 12.
    O. Lunin and S.D. Mathur, Correlation functions for M N/S Norbifolds, Commun. Math. Phys.219 (2001) 399 [hep-th/0006196] [INSPIRE].ADSzbMATHGoogle Scholar
  13. 13.
    O. Lunin and S.D. Mathur, Three point functions for M N/S Norbifolds with N = 4 supersymmetry, Commun. Math. Phys.227 (2002) 385 [hep-th/0103169] [INSPIRE].ADSzbMATHGoogle Scholar
  14. 14.
    B.A. Burrington, A.W. Peet and I.G. Zadeh, Twist-nontwist correlators in M N/S Norbifold CFTs, Phys. Rev.D 87 (2013) 106008 [arXiv:1211.6689] [INSPIRE].ADSGoogle Scholar
  15. 15.
    S.G. Avery, Using the D1-D5 CFT to understand black holes, Ph.D. thesis, Ohio State U., Columbus, OH, U.S.A. (2010) [arXiv:1012.0072] [INSPIRE].
  16. 16.
    C.A. Keller, Phase transitions in symmetric orbifold CFTs and universality, JHEP03 (2011) 114 [arXiv:1101.4937] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  17. 17.
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett.B 379 (1996) 99 [hep-th/9601029] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  18. 18.
    N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP04 (1999) 017 [hep-th/9903224] [INSPIRE].
  19. 19.
    J.R. David, G. Mandal and S.R. Wadia, D1/D5 moduli in SCFT and gauge theory and Hawking radiation, Nucl. Phys.B 564 (2000) 103 [hep-th/9907075] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS 3, Adv. Theor. Math. Phys.2 (1998) 733 [hep-th/9806194] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  21. 21.
    C. Vafa, Instantons on D-branes, Nucl. Phys.B 463 (1996) 435 [hep-th/9512078] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  22. 22.
    R. Dijkgraaf, G.W. Moore, E.P. Verlinde and H.L. Verlinde, Elliptic genera of symmetric products and second quantized strings, Commun. Math. Phys.185 (1997) 197 [hep-th/9608096] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  23. 23.
    F. Larsen and E.J. Martinec, U(1) charges and moduli in the D1-D5 system, JHEP06 (1999) 019 [hep-th/9905064] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  24. 24.
    J. de Boer, Six-dimensional supergravity on S 3× AdS 3and 2D conformal field theory, Nucl. Phys.B 548 (1999) 139 [hep-th/9806104] [INSPIRE].ADSGoogle Scholar
  25. 25.
    R. Dijkgraaf, Instanton strings and hyper-Kähler geometry, Nucl. Phys.B 543 (1999) 545 [hep-th/9810210] [INSPIRE].ADSzbMATHGoogle Scholar
  26. 26.
    J.M. Maldacena and H. Ooguri, Strings in AdS 3and SL(2, R) WZW model 1: the spectrum, J. Math. Phys.42 (2001) 2929 [hep-th/0001053] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  27. 27.
    J.M. Maldacena, H. Ooguri and J. Son, Strings in AdS 3and the SL(2, R) WZW model 2: Euclidean black hole, J. Math. Phys.42 (2001) 2961 [hep-th/0005183] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  28. 28.
    J.M. Maldacena and H. Ooguri, Strings in AdS 3and the SL(2, R) WZW model 3: correlation functions, Phys. Rev.D 65 (2002) 106006 [hep-th/0111180] [INSPIRE].ADSGoogle Scholar
  29. 29.
    L. Eberhardt and M.R. Gaberdiel, Strings on AdS 3 × S 3 × S 3 × S 1, JHEP06 (2019) 035 [arXiv:1904.01585] [INSPIRE].ADSGoogle Scholar
  30. 30.
    S. Hampton, S.D. Mathur and I.G. Zadeh, Lifting of D1-D5-P states, JHEP01 (2019) 075 [arXiv:1804.10097] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  31. 31.
    M.R. Gaberdiel, C. Peng and I.G. Zadeh, Higgsing the stringy higher spin symmetry, JHEP10 (2015) 101 [arXiv:1506.02045] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  32. 32.
    B.A. Burrington, S.D. Mathur, A.W. Peet and I.G. Zadeh, Analyzing the squeezed state generated by a twist deformation, Phys. Rev.D 91 (2015) 124072 [arXiv:1410.5790] [INSPIRE].ADSMathSciNetGoogle Scholar
  33. 33.
    Z. Carson, S. Hampton, S.D. Mathur and D. Turton, Effect of the deformation operator in the D1-D5 CFT, JHEP01 (2015) 071 [arXiv:1410.4543] [INSPIRE].ADSGoogle Scholar
  34. 34.
    Z. Carson, S. Hampton, S.D. Mathur and D. Turton, Effect of the twist operator in the D1-D5 CFT, JHEP08 (2014) 064 [arXiv:1405.0259] [INSPIRE].ADSGoogle Scholar
  35. 35.
    Z. Carson, S.D. Mathur and D. Turton, Bogoliubov coefficients for the twist operator in the D1-D5 CFT, Nucl. Phys.B 889 (2014) 443 [arXiv:1406.6977] [INSPIRE].ADSzbMATHGoogle Scholar
  36. 36.
    B.A. Burrington, A.W. Peet and I.G. Zadeh, Operator mixing for string states in the D1-D5 CFT near the orbifold point, Phys. Rev.D 87 (2013) 106001 [arXiv:1211.6699] [INSPIRE].ADSGoogle Scholar
  37. 37.
    S.G. Avery and B.D. Chowdhury, Intertwining relations for the deformed D1-D5 CFT, JHEP05 (2011) 025 [arXiv:1007.2202] [INSPIRE].
  38. 38.
    S.G. Avery, B.D. Chowdhury and S.D. Mathur, Deforming the D1-D5 CFT away from the orbifold point, JHEP06 (2010) 031 [arXiv:1002.3132] [INSPIRE].
  39. 39.
    S.G. Avery, B.D. Chowdhury and S.D. Mathur, Excitations in the deformed D1-D5 CFT, JHEP06 (2010) 032 [arXiv:1003.2746] [INSPIRE].
  40. 40.
    S.G. Avery and B.D. Chowdhury, Emission from the D1-D5 CFT: higher twists, JHEP01 (2010) 087 [arXiv:0907.1663] [INSPIRE].ADSzbMATHGoogle Scholar
  41. 41.
    S.G. Avery, B.D. Chowdhury and S.D. Mathur, Emission from the D1-D5 CFT, JHEP10 (2009) 065 [arXiv:0906.2015] [INSPIRE].ADSGoogle Scholar
  42. 42.
    A. Pakman, L. Rastelli and S.S. Razamat, A spin chain for the symmetric product CFT 2, JHEP05 (2010) 099 [arXiv:0912.0959] [INSPIRE].
  43. 43.
    A. Pakman, L. Rastelli and S.S. Razamat, Diagrams for symmetric product orbifolds, JHEP10 (2009) 034 [arXiv:0905.3448] [INSPIRE].ADSMathSciNetGoogle Scholar
  44. 44.
    A. Pakman, L. Rastelli and S.S. Razamat, Extremal correlators and Hurwitz numbers in symmetric product orbifolds, Phys. Rev.D 80 (2009) 086009 [arXiv:0905.3451] [INSPIRE].ADSGoogle Scholar
  45. 45.
    E. Gava and K.S. Narain, Proving the PP wave/CFT 2duality, JHEP12 (2002) 023 [hep-th/0208081] [INSPIRE].ADSGoogle Scholar
  46. 46.
    J. Gomis, L. Motl and A. Strominger, PP wave/CFT 2duality, JHEP11 (2002) 016 [hep-th/0206166] [INSPIRE].ADSGoogle Scholar
  47. 47.
    B.A. Burrington, I.T. Jardine and A.W. Peet, Operator mixing in deformed D1-D5 CFT and the OPE on the cover, JHEP06 (2017) 149 [arXiv:1703.04744] [INSPIRE].ADSzbMATHGoogle Scholar
  48. 48.
    J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory, Phys. Rept.369 (2002) 549 [hep-th/0203048] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  49. 49.
    A. Schwimmer and N. Seiberg, Comments on the N = 2, N = 3, N = 4 superconformal algebras in two-dimensions, Phys. Lett.B 184 (1987) 191 [INSPIRE].ADSMathSciNetGoogle Scholar
  50. 50.
    M. Yu, The unitary representations of the N = 4 SU(2) extended superconformal algebras, Nucl. Phys.B 294 (1987) 890 [INSPIRE].ADSMathSciNetGoogle Scholar
  51. 51.
    K. Roumpedakis, Comments on the S Norbifold CFT in the large N -limit, JHEP07 (2018) 038 [arXiv:1804.03207] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  52. 52.
    E.J. Martinec and W. McElgin, String theory on AdS orbifolds, JHEP04 (2002) 029 [hep-th/0106171] [INSPIRE].MathSciNetGoogle Scholar
  53. 53.
    S. Giusto, O. Lunin, S.D. Mathur and D. Turton, D1-D5-P microstates at the cap, JHEP02 (2013) 050 [arXiv:1211.0306] [INSPIRE].ADSGoogle Scholar
  54. 54.
    B. Chakrabarty, D. Turton and A. Virmani, Holographic description of non-supersymmetric orbifolded D1-D5-P solutions, JHEP11 (2015) 063 [arXiv:1508.01231] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  55. 55.
    I. Bena, E. Martinec, D. Turton and N.P. Warner, Momentum fractionation on superstrata, JHEP05 (2016) 064 [arXiv:1601.05805] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  56. 56.
    W. Lerche, C. Vafa and N.P. Warner, Chiral rings in N = 2 superconformal theories, Nucl. Phys.B 324 (1989) 427 [INSPIRE].ADSMathSciNetGoogle Scholar
  57. 57.
    J. Polchinski, String theory. Volume 1: an introduction to the bosonic string, Cambridge University Press, Cambridge, U.K. (1998) [INSPIRE].zbMATHGoogle Scholar
  58. 58.
    B.A. Burrington, A.W. Peet and I.G. Zadeh, Bosonization, cocycles and the D1-D5 CFT on the covering surface, Phys. Rev.D 93 (2016) 026004 [arXiv:1509.00022] [INSPIRE].ADSMathSciNetGoogle Scholar
  59. 59.
    L. Eberhardt and I.G. Zadeh, N = (3, 3) holography on AdS 3 × (S 3 × S 3 × S 1)/Z 2, JHEP07 (2018) 143 [arXiv:1805.09832] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of TorontoTorontoCanada
  2. 2.Department of Physics and AstronomyHofstra UniversityHempsteadU.S.A.
  3. 3.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations