Advertisement

Are subcortical rove beetles truly Holarctic? An integrative taxonomic revision of north temperate Quedionuchus (Coleoptera: Staphylinidae: Staphylininae)

Abstract

The recognition of Holarctic species, those shared between Nearctic and Palaearctic regions, often implies continuous or recent events of gene flow across the 85-km-wide Bering Strait between Alaska and Russia. During the Pleistocene (2.8–0.012 Mya), the Bering land bridge has provided frequent episodes of continuous, tundra habitat across this barrier, while the taiga forests of the northern hemisphere has been separated for much longer, at least 5.4 Mya. This more ancient divergence has led to allopatric speciation in nearly all forest-specialized organisms, including all tree species, and casts doubt on the taxonomic validity of the few subcortical beetle species that are considered to be Holarctic. Here we test the apparent Holarctic distribution of one such species, the morphologically variable rove beetle Quedionuchus plagiatus. Drawing upon morphological and molecular evidence, including morphometric analysis of male genitalia and phylogenetic and cluster analyses of DNA barcodes, we demonstrate that species-level diversity has been greatly underestimated in this lineage and conclude that none of its members are Holarctic. We propose complete allopatric divergence across Beringia in obligate forest beetles and discuss the role of biological constraints as barriers to Holarctic geneflow. We describe Quedionuchus caucasicus Brunke, sp. nov., Q. deceptor Brunke sp. nov., Quedionuchus gilaensis Brunke sp. nov., and Quedionuchus yunnanensis Brunke sp. nov.; revalidate Quedionuchus glaber (O. Müller) and Quedionuchus longipennis (Mannerheim); and propose the following: Quedius longipennis Mannerheim, 1846 = Quedius rufipennis Mäklin, 1853 syn. nov. (previous synonym of Q. plagiatus Mannerheim); Staphylinus glaber O. Müller, 1776 = Quedius planatus Sharp, 1884 syn. nov.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. (CEC) Commission for Environmental Cooperation. (2018). Terrestrial Ecoregions - Level II Ecoregions. http://www.cec.org/tools-and-resources/map-files/terrestrial-ecoregions-level-ii. Accessed April 15 2019.

  2. AntWeb. (2019). Version 8.2.9. Camponotus herculeanus. URL: https://www.antweb.org/description.do?rank=species&genus=camponotus&name=herculeanus Accessed June 11, 2019.

  3. Bekker, E. I., Karabanov, D. P., Galimov, Y. R., Haag, C. R., Neretina, T. V., & Kotov, A. A. (2018). Phylogeography of Daphnia magna Straus (Crustacea: Cladocera) in Northern Eurasia: evidence for a deep longitudinal split between mitochondrial lineages. PLoS One, 13, e0194045.

  4. Bergsten, J., Bilton, D. T., Fujisawa, T., Elliot, M., Monaghan, M. T., Balke, M., et al. (2012). The effect of geographical scale of sampling on DNA barcoding. Systematic Biology, 61, 851–869.

  5. Bernhauer, M. (1933). Neues aus der Staphylinidenfauna Chinas. Entomologisches Nachrichtenblatt, (Troppau), 7, 39–54.

  6. Bernhauer, M. (1934). Siebenter Beitrag zur Staphylinidenfauna Chinas. Entomologisches Nachrichtenblatt, (Troppau), 8, 1–20.

  7. Bernhauer, M., & Schubert, K. (1916). Family Staphylinidae V. In S. Schenkling (Ed.), Coleopterorum catalogus (p. 432). Berlin: Junk.

  8. Blackwelder, R. E. (1952). The generic names of the beetle family Staphylinidae, with an essay on genotypy. United States National Museum Bulletin, 200, i–iv 1–483.

  9. Bonhomme, V., Picq, S., Gaucherel, C., & Claude, J. (2014). Momocs: outline analysis using R. Journal of Statistical Software, 56, 1–24.

  10. Bousquet, Y., Bouchard, P., Davies, A., & Sikes, D. S. (2013). Checklist of beetles (Coleoptera) of Canada and Alaska (Vol. 109, Series Faunistica). Sofia, Bulgaria: Pensoft.

  11. Bousquet, Y., Laplante, S., Hammond, H. E., & Langor, D. (2017). Cerambycidae (Coleoptera) of Canada and Alaska: identification guide with nomenclatural, taxonomic, distributional, host-plant and ecological data. Prague: Nakladatelství Jan Farkač.

  12. Brunke, A., & Solodovnikov, A. (2013). Alesiella gen.n. and a newly discovered relict lineage of Staphylinini (Coleoptera: Staphylinidae). Systematic Entomology, 38, 689–707.

  13. Brunke, A. J., Chatzimanolis, S., Schillhammer, H., & Solodovnikov, A. (2016). Early evolution of the hyperdiverse rove beetle tribe Staphylinini (Coleoptera: Staphylinidae: Staphylininae) and a revision of its higher classification. Cladistics, 32, 427–451.

  14. Brunke, A., Smetana, A., Carruthers-Lay, D., & Buffam, J. (2017). Revision of Hemiquedius Casey (Staphylinidae, Staphylininae) and a review of beetles dependent on beavers and muskrats in North America. ZooKeys, 702, 27–43.

  15. Brunke, A. J., Bouchard, P., Douglas, H. B, & Pentinsaari, M. (2019a). Coleoptera of Canada. In: D. W Langor, & C. S. Sheffield (Eds.), The biota of Canada - a biodiversity assessment. Part 1: the terrestrial arthropods. ZooKeys, 819, 361–376. https://doi.org/10.3897/zookeys.819.24724.

  16. Brunke, A. J., Żyła, D., Yamamoto, S., & Solodovnikov, A. (2019b). Baltic amber Staphylinini (Coleoptera: Staphylinidae: Staphylininae): a rove beetle fauna on the eve of our modern climate. Zoological Journal of the Linnaean Society, 187, 166–197.

  17. Casey, T. L. (1915). Studies in some staphylinid genera of North America. In Memoirs on the Coleoptera VI (pp. 395–460). Lancaster: The New Era Printing Co..

  18. Coiffait, H. (1978). Coléoptères Staphylinidae de la région paléarctique occidentale. III. Sous famille Staphylininae, tribu Quediini; sous famille Paederinae, tribu Pinophilini. Nouvelle Revue d’Entomologie, Supplement 8, 1–364.

  19. Dickmann, D., & Kuzovkina, J. (2008). Poplars and willows of the world, with emphasis on silviculturally important species. FAO forest management division working paper IPC/ 9-2. Rome, Italy.

  20. Dinerstein, E., Olson, D., Joshi, A., Tyukavina, A., Patzelt, A., Miller, A. G., et al. (2017). An ecoregion-based approach to protecting half the terrestrial realm. BioScience, 67, 534–545.

  21. Erwin, T. L. (2007). A treatise on the Western Hemisphere Caraboidea (Coleoptera): their classification, distributions, and ways of life. Volume I (Trachypachidae, Carabidae - Nebriiformes 1) (Pensoft Series Faunistica 66). Sofia-Moscow: Pensoft Publishers.

  22. Fisher, B. L., Cover, S. P., Kirsch, G., Kane, J., & Nobile, A. (2007). Ants of North America a guide to the Genera. Berkeley: University of California Press.

  23. Gladenkov, A. Y., Oleinik, A. E., Marincovich, L., & Barinov, K. B. (2002). A refined age for the earliest opening of Bering Strait. Palaeogeography, Palaeoclimatology, Palaeoecology, 183, 321–328.

  24. Graham, A. (2018). The role of land bridges, ancient environments, and migrations in the assembly of the North American flora. Journal of Systematics and Evolution, 56, 405–429.

  25. Guidon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59, 307–321.

  26. Gurina, A. A., Dudko, R. Y., Prosvirov, A. S., Tshernyshev, S. E., Legalov, A. A., & Zinovyev, E. V. (2019). Coleoptera assemblages from the Quaternary deposits of Kizikha river, the southernmost late Pleistocene insects of the West Siberian Plain. Invertebrate Zoology, 16, 165–182.

  27. Gyllenhal, L. (1810). Insecta Suecica descripta. Classis I. Coleoptera sive Eleuterata. (Vol. 1(2)). Scaris: F.J. Leverentz xx+660pp.

  28. Hansen, A. K., Justesen, M. J., Olsen, M. T., & Solodovnikov, A. (2017). Genomic population structure and conservation of the red listed Carabus arcensis (Coleoptera: Carabidae) in island–mainland habitats of Northern Europe. Insect Conservation and Diversity, 11, 255–266.

  29. Hansen, A. K., Justesen, M. J., Kepfer-Rojas, S., Byriel, D. B., Pedersen, J., & Solodovnikov, A. (2018). Ecogeographic patterns in a mainland-island system in Northern Europe as inferred from the rove beetles (Coleoptera: Staphylinidae) on Læsø island. European Journal of Entomology, 115, 256–263.

  30. Hendrich, L., Moriniere, J., Haszprunar, G., Hebert, P. D. N., Hausmann, A., Kohler, F., et al. (2015). A comprehensive DNA barcode database for Central European beetles with a focus on Germany: adding more than 3,500 identified species to BOLD. Molecular Ecology Resources, 15, 795–818. https://doi.org/10.1111/1755-0998.12354.

  31. Herman, L. (2001). Catalog of the Staphylinidae (Insecta, Coleoptera): 1758 to the end of the second millennium. Bulletin of the American Museum of Natural History, 265, 1–4218.

  32. Hoang, D. T., Chernomor, O., Haeseler, A. v., Mihn, B. Q., & Vinh, L. S. (2018). Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35, 518–522.

  33. ICZN (1999). International Code of Zoological Nomenclature. Fourth edition. http://www.iczn.org/iczn/index.jsp. Accessed March 1 2019.

  34. ICZN. (2004). OPINION 2086 (Case 3231). Staphylinidae Latreille, 1804 (Insecta, Coleoptera): 17 specific names conserved. Bulletin of Zoological Nomenclature, 61, 194–199.

  35. Jakobsson, M., Pearce, C., Cronin, T. M., Backman, J., Andersen, L. G., Barrientos, N., et al. (2017). Post-glacial flooding of the Bering Land Bridge dated to 11 cal ka BP based on new geophysical and sediment records. Climate of the Past, 13, 991.

  36. Janicki, J., Narula, N., Ziegler, M., Guénard, B., & Economo, E. P. (2016). Visualizing and interacting with large-volume biodiversity data using client–server web-mapping applications: the design and implementation of antmaps.org. Ecological Informatics, 32, 185–193.

  37. Johansson, T., Hjältén, J., Gibb, H., Hilszczanski, J., Stenlid, J., Ball, J. P., et al. (2007). Variable response of different functional groups of saproxylic beetles to substrate manipulation and forest management: Implications for conservation strategies. Forest Ecology and Management, 242, 496–510.

  38. Kasule, F. K. (1970). The larvae of Paederinae and Staphylininae (Coleoptera: Staphylinidae) with keys to the known British genera. Transactions of the Royal Entomological Society of London, 122, 49–80.

  39. Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30, 3059–3066.

  40. Kimsey, L. S., & Carpenter, J. M. (2012). The Vespinae of North America (Vespidae, Hymenoptera). Journal of Hymenoptera Research, 28, 37–65.

  41. Klimaszewski, J., & Brunke, A. J. (2018). 5. Canada’s adventive rove beetle (Coleoptera, Staphylinidae) fauna: a long-term case study on the detection, origin, introduction pathways, and dynamic distribution of non-native beetles. In O. Betz, U. Irmler, & J. Klimaszewski (Eds.), Biology of rove beetles (Staphylinidae) (296 pp. (pp. 65–79). Cham, Switzerland: Springer.

  42. Klimaszewski, J., Sikes, D. S., Brunke, A. J., & Bourdon, C. (2019). Species review of the genus Boreophilia Benick from North America (Coleoptera, Staphylinidae, Aleocharinae, Athetini): systematics, habitat, and distribution. ZooKeys, 848, 57–102.

  43. Kohli, M. K., Sahlén, G., Kuhn, W. R., & Ware, J. L. (2018). Extremely low genetic diversity in a circumpolar dragonfly species, Somatochlora sahlbergi (Insecta: Odonata: Anisoptera). Scientific Reports, 8, 15114.

  44. Lafontaine, J. D., & Wood, D. M. (1988). A zoogeographic analysis of the Noctuidae (Lepidoptera) of Beringia and some inferences about past beringian habitats. Memoirs of the Entomological Society of Canada, 144, 109–123.

  45. Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. (2016). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34, 772–773.

  46. Lattin, G. (1967). Grundriß der Zoogeographie. Jena: VEB Gustav Fischer Verlag 602 pp.

  47. Lindroth, C. H. (1961). The ground-beetles (Carabidae, excl. Cicindelinae) of Canada and Alaska. Part 2. Opuscula Entomologica Supplementum, 20, 1–200.

  48. Lutz, H. J. (1964). History of Sitka Spruce planted in 1805 at Unalaska Island by the Russians. Juneau, Alaska: U.S. Department of Agriculture 25 pp.

  49. Mäklin, F. G. (1853). [New species and notes]. In C. v. Mannerheim., Zweiter Nachtrag zur Kaefer-Fauna der Nord- Amerikanischen Laender des Russischen Reiches. Bulletin de la Société Impériale des Naturalistes de Moscou, 26, 95–273.

  50. Mannerheim, C. G. (1843). Beitrag zur Kaefer-Fauna der Aleutischen Inseln, der Insel Sitkha und Neu-Californiens. Bulletin de la Société Impériale des Naturalistes de Moscou, 16, 175–314.

  51. Mannerheim, C. G. (1846). Nachtrag zur Kaefer-fauna der aleutischen Inseln und der Insel Sitkha. Bulletin de la Société Impériale des Naturalistes de Moscou, 19, 501–516.

  52. Müller, O. F. (1776). Zoologiae Danicae prodromus, seu animalium Daniae et Norvegiae indigenarum characteres, nomina, et synonyma imprimis popularium. Havniae: Hallager. 32+282 pp.

  53. Nguyen, L.-T., Schmidt, H. A., Haeseler, A. v., & Mihn, B. Q. (2015). IQ- TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274.

  54. Payette, S., & Lavoie, C. (2001). The subarctic forest-tundra: the structure of a biome in a changing climate. BioScience, 51, 709–718.

  55. Payette, S., Eronen, M., & Jasinski, P. (2002). The circumboreal tundra-taiga interface: Late Pleistocene and Holocene changes. Ambio Special Report, 12, 15–22.

  56. Pototskaya, V. A. (1967). Opredelitel’ lichinok korotkonadkrylykh zhukov evropeiskoi chasti SSSR. Moskva: Academiya Nauk SSSR, Izdatel'stvo Nauka 120 pp.

  57. R Core Team. (2018). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

  58. Rambaut, A., Suchard, M., Xie, D., & Drummond, A. (2014). Tracer v1.6, available from http://beast.bio.ed.ac.uk/Tracer.

  59. Ratnasingham, S., & Hebert, P. D. N. (2013). A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS One, 8, e66213.

  60. Raupach, M. J., Hannig, K., Moriniere, J., & Hendrich, L. (2019). About Notiophilus Duméril, 1806 (Coleoptera, Carabidae): species delineation and phylogeny using DNA barcodes. Deutsche Entomologische Zeitschrift, 66, 63–73.

  61. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D., Darling, A., Höhna, S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.

  62. Royal Geographical Society. (1887). Potanin's Journey in North-Western China and Eastern Tibet. (1887). Proceedings of the Royal Geographical Society and Monthly Record of Geography, 9, 233–235. https://doi.org/10.2307/1801220.

  63. Sanmartín, I., Engoff, H., & Ronquist, F. (2001). Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biological Journal of the Linnean Society, 73, 345–390.

  64. Schär, S., Talavera, G., Espadaler, X., Rana, J. D., Andersen, A. A., Cover, S. P., et al. (2018). Do Holarctic ant species exist? Trans-Beringian dispersal and homoplasy in the Formicidae. Journal of Biogeography, 45, 1917–1928.

  65. Schülke, M., & Smetana, A. (2015). Staphylinidae. In I. Löbl & D. Löbl (Eds.), Catalogue of Palaearctic Coleoptera (Vol. 2, pp. 901–1134). Leiden, The Netherlands: Brill.

  66. Sharp, D. (1884). Staphylinidae. Biologia Centrali-Americana. Insecta. Coleoptera Vol 1 (2) (pp. 313–392). London: Taylor and Francis.

  67. Sharp, D. (1888). The Staphylinidae of Japan. The Annals and Magazine of Natural History, 6, 369387.

  68. Shorthouse, D. (2010). SimpleMappr, an online tool to produce publication-quality point maps. http://www.simplemappr.net. Accessed March 1 2019.

  69. Sikes, D. S., Trumbo, S. T., & Peck, S. B. (2016). Cryptic diversity in the New World burying beetle fauna: Nicrophorus hebes Kirby; new status as a resurrected name (Coleoptera: Silphidae: Nicrophorinae). Arthropod Systematics and Phylogeny, 74, 299–309.

  70. Smetana, A. (1965). Staphylinini und Quediini (Col., Staphylinidae) von Newfoundland, Südost-Labrador und Nova Scotia. Acta Entomologica Fennica, 20, 1–60.

  71. Smetana, A. (1967). Ergebnisse der zoologischen Forschungen von Dr. Z. Kaszab in der Mongolei 86. Staphylinidae II. Unterfamilien Paederinae, Xantholininae und Staphylininae (Coleoptera). Acta Entomologica Bohemoslovaca, 64, 195–218.

  72. Smetana, A. (1971). Revision of the tribe Quediini of North America north of Mexico (Coleoptera: Staphylinidae). Memoirs of the Entomological Society of Canada, No., 79, 1–303.

  73. Smetana, A. (1975). New and little-known high altitude Quedius from Mexico (Coleoptera: Staphylinidae). The Canadian Entomologist, 107, 311–323.

  74. Smetana, A. (1976). Review of the Central American species of the subgenus Quedionuchus of the genus Quedius (Col. Staphylinidae). Studies on neotropical fauna and environment, 11, 223–247.

  75. Smetana, A. (1990). Revision of the tribe Quediini of America North of Mexico (Coleoptera: Staphylinidae). Supplementum 6. The Coleopterists Bulletin, 44, 95–104.

  76. Smetana, A. (1995). Taxonomic and faunistic contributions to the knowledge of Palaearctic Quediina. Elytra, Tokyo, 23, 77–88.

  77. Smetana, A. (2011). Contributions to the knowledge of the Quediina (Coleoptera: Staphylinidae: Staphylinini) of China. Part 40. Genus Quedius Stephens, 1829. Subgenus Quedionuchus Sharp 1884. Section 1. Studies and Reports Taxonomical Series, 7, 393–397.

  78. Smetana, A. (2017). Quediine subtribes of Staphylinini (Coleoptera, Staphylinidae, Staphylininae) of mainland China (434 pp). Prague: J. Farkač.

  79. Solsky, S. M. (1868). Études sur les Staphylinides de Méxique. Horae Societatis Entomologicae Rossicae, 5, 119–144.

  80. Staniec, B. (1996). Morphology of the pupa of Quedius plagiatus Mannerheim (Coleoptera: Staphylinidae). Polskie Pismo Entomologiczne, 65, 113–118.

  81. Swanson, D. K. (2003). A comparison of taiga flora in north-eastern Russia and Alaska/Yukon. Journal of Biogeography, 30, 1109–1121.

  82. Weslien, J. (1992). The arthropod complex associated with Ips typographus (L.) (Coleoptera, Scolytidae): species composition, phenology, and impact on bark beetle productivity. Entomologica Fennica, 3, 205–213.

  83. Żyła, D., & Solodovnikov, A. (2019). Multilocus phylogeny defines a new classification of Staphylininae (Coleoptera: Staphylinidae), a rove beetle group with high lineage diversity. Systematic Entomology. https://doi.org/10.1111/syen.12382.

Download references

Acknowledgements

We thank all curators mentioned in the ‘Methods’ section for the opportunity to study material under their care. D. Carruthers-Lay and A. Cyr (CNC) carefully databased all specimens and performed the morphological measurements. We thank J. Hsiung (CNC) for the detailed line drawings of male genitalia and female tergite X. AJB acknowledges his A-base funding (Agriculture and Agri-Food Canada) from projects J-002276 and J-001849 (Systematics of Beneficial Insects). We thank A. Shavrin and A. Ryvkin for their critical help with georeferencing Russian localities.

Author information

Correspondence to A. J. Brunke.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brunke, A.J., Salnitska, M., Hansen, A.K. et al. Are subcortical rove beetles truly Holarctic? An integrative taxonomic revision of north temperate Quedionuchus (Coleoptera: Staphylinidae: Staphylininae). Org Divers Evol (2019). https://doi.org/10.1007/s13127-019-00422-2

Download citation

Keywords

  • Beringia
  • Allopatric speciation
  • Morphometrics
  • CO1 gene