Advertisement

The reduced limbed lizards of the genus Bachia (Reptilia, Squamata, Gymnophthalmidae); biogeography, cryptic diversity, and morphological convergence in the eastern Caribbean

  • John C. MurphyEmail author
  • Daniele Salvi
  • Joana L. Santos
  • Alvin L. Braswell
  • Stevland P. Charles
  • Amaél Borzée
  • Michael J. JowersEmail author
Original Article
  • 65 Downloads

Abstract

The phylogenetic and systematic relationships of the reduced limbed lizards of the genus Bachia are poorly understood. Here, we investigate the eastern Caribbean Bachia assigned to the B. heteropa and B. flavescens groups, whose members are characterized by a band of hexagonal or quadrangular scales on the dorsum, respectively. The polytypic Bachia heteropa is redefined, and the previous subspecies in the Grenadines (Bachia heteropa alleni) and Trinidad (B. h. trinitatis) are demonstrated to be species-level lineages. One new species of hex-scaled Bachia was formerly assigned intergrade status between B. heteropa and Bachia trinitatis. Here, it is described as a new species from Caripito, Venezuela. Bachia h. heteropa, B. h. lineata, and B. h. marcelae are elevated to species status. The Tobago species formerly considered a member of the Bachia flavescens species group is described as a new species. In this paper, we increase the number of species in the genus Bachia from 25 to 31 with the description of two new species and the elevation of four previously described species from the synonymy of Bachia heteropa. This work will greatly improve the understanding of the systematics and evolution of Bachia in the eastern Caribbean.

Keywords

Cryptozoic Dispersal Fossorial Grenada Trinidad Venezuela 

Notes

Acknowledgments

Our sincerest thanks go to Alan Resetar at the Field Museum (FMNH); Jonathan B. Losos, Josè Rosado, and Tsuyoshi Takahashi at the Museum Comparative Zoology (MCZ); Bryan Stuart and Jeff Beane at the North Carolina Museum of Natural Science (NCSM); Frank Burbrink, Chris Raxworthy and David Kizirian at the American Museum of Natural History (AMNH); Jens Vindum at the California Academy of Sciences (CAS); Richard Glor at the University of Kansas (KU); Greg Schneider at the University of Michigan, Museum of Zoology (UMMZ); Kevin de Queiroz and Jeremy F. Jacobs at the Smithsonian Institution (USNM); and Mike G. Rutherford at the University of the West Indies (UWIZM) for providing logistical support, access to the museum’s collections, and the loan of specimens. We would also like to thank Harold K. Voris, Laurie J. Vitt, and Robert Thomas for commenting on the manuscript.

Funding information

DS is currently supported by the program ‘Rita Levi Montalcini’ for the recruitment of young researchers at the University of L’Aquila. MJJ work was supported by the International Collaborative Research Grant, National Institute of Ecology, South Korea.

Supplementary material

13127_2019_393_MOESM1_ESM.pdf (61 kb)
ESM 1 (PDF 60 kb)
13127_2019_393_MOESM2_ESM.pdf (106 kb)
ESM 2 (PDF 106 kb)
13127_2019_393_MOESM3_ESM.pdf (105 kb)
ESM 3 (PDF 104 kb)
13127_2019_393_MOESM4_ESM.pdf (194 kb)
ESM 4 (PDF 193 kb)
13127_2019_393_MOESM5_ESM.pdf (133 kb)
ESM 5 (PDF 133 kb)
13127_2019_393_MOESM6_ESM.pdf (413 kb)
ESM 6 (PDF 412 kb)

References

  1. Albert, E. M., & Fernández, A. (2009). Evidence of cryptic speciation in a fossorial reptile: Description of a new species of Blanus (Squamata: Amphisbaenia: Blanidae) from the Iberian Peninsula. Zootaxa, 2234, 56–68.Google Scholar
  2. Avila-Pires, T. C. S. (1995). Lizards of Brazilian Amazonia (Reptilia: Squamata). Zoologische Verhandelingen, 299, 1–706.Google Scholar
  3. Barbour, T. (1914). A contribution to the zoogeography of the West Indies, with especial reference to amphibians and reptiles. Memoirs of the Museum of Comparative Zoology, 44, 205–359.Google Scholar
  4. Barbour, T. (1933). Notes on Scolecosaurus. Copeia, 1933, 74–77.CrossRefGoogle Scholar
  5. Beebe, W. (1943). Physical factors in the ecology of Caripito, Venezuela. Zoologica, 28, 53–59.Google Scholar
  6. Beebe, W. (1945). Field notes on the lizards of Kartabo, British Guiana and Caripito, Venezuela. Part 3. Teiidae, Amphisbaenidae, and Scincidae. Zoologica, 30, 7–32.Google Scholar
  7. Bonnaterre, P. J. (1789). Erpétologie. xxviii, 71 pp. Paris: Panckoucke Lib.Google Scholar
  8. Boulenger, G. A. (1903). Descriptions of new lizards in the collection of the British museum. Annals and Magazine of Natural History, 12, 429–435.CrossRefGoogle Scholar
  9. Brandley, M. C., Huelsenbeck, J. P., & Wiens, J. J. (2008). Rates and patterns in the evolution of snake-like body form in squamate reptiles: Evidence for repeated re-evolution of lost digits and long-term persistence of intermediate body forms. Evolution: International Journal of Organic Evolution., 62, 2042–2064.CrossRefGoogle Scholar
  10. Brongersma, L. D. (1946). Some notes on species of the genera Bachia and Scolecosaurus. Zoologische Mededelingen, 26, 237–246.Google Scholar
  11. Burt, C. E., & Burt, M. D. (1931). South American lizards in the collection of the American Museum of Natural History. Bulletin of the American Museum of Natural History, 61, 227–395.Google Scholar
  12. Burt, C. E., & Burt, M. D. (1933). A preliminary check list of the lizards of South America. Academy of Sciences of St. Louis, 28, 1–104.Google Scholar
  13. Camargo, A., Heyer, W. R., & de Sá, R. O. (2009). Phylogeography of the frog Leptodactylus validus (Amphibia: Anura): Patterns and timing of colonization events in the Lesser Antilles. Molecular Phylogenetics and Evolution, 53, 571–579.CrossRefPubMedGoogle Scholar
  14. Colston, T. J., Grazziotin, F. G., Shepard, D. B., Vitt, L. J., Colli, G. R., Henderson, R. W., Hedges, S. B., Bonatto, S., Zaher, H., Noonan, B. P., & Burbrink, F. T. (2013). Molecular systematics and historical biogeography of tree boas (Corallus spp.). Molecular Phylogenetics and Evolution, 66, 953–959.CrossRefPubMedGoogle Scholar
  15. Daniels, S. R., Heideman, N. J. L., & Hendrick, M. G. L. (2009). Examination of evolutionary relationships in the cape fossorial skink species complex (Acontinae: Acontias meleagris meleagris) reveals the presence of five cryptic lineages. Zoologica Scripta, 38, 449–463.CrossRefGoogle Scholar
  16. Dixon, J. R. (1973). A systematic review of the teiid lizards, genus Bachia, with remarks on Heterodactylus and Anotosaura. Miscellaneous Publications of the University of Kansas Museum of Natural History, 57, 1–47.Google Scholar
  17. Donoso-Barros, R. (1968). The lizards of Venezuela (check list and key). Caribbean Journal of Science, 8, 105–122.Google Scholar
  18. Donoso-Barros, R., & Garrido, R. (1964). Nuevo Teiidae de Venezuela. Bachia marcelae nov. sp. Publicaciones Ocasionales del Museo Ciencia Natural de Caracas, 8, 1–7.Google Scholar
  19. Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Duméril, A. M. C., & Bibron, G. (1839). Erpétologie Générale on Histoire Naturelle Complète des Reptiles (Vol. 5). Paris: Roret Fainet Thunot.Google Scholar
  21. Fitzinger, L. (1826). Neue Classification der Reptilien nach ihren natürlichen Verwandtschaften nebst einer Verwandschafts-Tafel und einem Verzeichnisse der Reptilien-Sammlung des K. K. Zoologischen Museums zu Wien. Wien: J.G. Heubner.CrossRefGoogle Scholar
  22. Galis, F., Arntzen, J. W., & Lande, R. (2010). Dollo’s law and the irreversibility of digit loss in Bachia. Evolution, 64, 2466–2476.PubMedGoogle Scholar
  23. Garman, S. (1892). On Cophias and Bachia. Bulletin of the Essex Institute, 24, 96–97.Google Scholar
  24. Germano, J. M., Sander, J. M., Henderson, R. W., & Powell, R. O. (2003). Herpetofaunal communities in Grenada: A comparison of altered sites, with an annotated checklist of Grenadian amphibians and reptiles. Caribbean Journal of Science, 39, 68–76.Google Scholar
  25. Goicoechea, N., Frost, D. R., De la Riva, I., Pellegrino, K., Sites, J., Rodrigues, M. T., & Padial, J. M. (2016). Molecular systematics of teioid lizards (Teioidea/Gymnophthalmoidea: Squamata) based on the analysis of 48 loci under tree alignment and similarity alignment. Cladistics, 32, 624–671.CrossRefGoogle Scholar
  26. Goloboff, P. A., Farris, J. S., & Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics, 24, 774–778.CrossRefGoogle Scholar
  27. Gouy, M., Guindon, S., & Gascuel, O. (2010). SeaView version 4. A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Phylogenetics and Evolution, 27, 221–224.Google Scholar
  28. Greer, A. E. (1991). Limb reduction in squamates: Identification of the lineages and discussion of the trends. Journal of Herpetology, 25, 166–173.CrossRefGoogle Scholar
  29. Groome, J. (1970). A natural history of the island of Grenada, West Indies. Arima: Caribbean printers, ltd.Google Scholar
  30. Hardy, J. D. (1982). Biogeography of Tobago, West Indies, with special reference to amphibians and reptiles, a review. Bulletin of the Maryland Herpetological Society, 18, 37–142.Google Scholar
  31. Heideman, N. J. L., Mulcahy, D. G., Sites, J. W., Jr., Hendricks, M. G., & Daniels, S. R. (2011). Cryptic diversity and morphological convergence in threatened species of fossorial skinks in the genus Scelotes (Squamata: Scincidae) from the Western Cape Coast of South Africa: Implications for species boundaries, digit reduction, and conservation. Molecular Phylogenetics and Evolution, 61, 823–833.CrossRefPubMedGoogle Scholar
  32. Henderson, R. W., & Hedges, S. B. (1995). Origin of west Indian populations of the geographically widespread boa Corallus enydris inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 4, 88–92.CrossRefPubMedGoogle Scholar
  33. Henderson, R. W., & Murphy, J. C. (2012). The collared tree lizard, Plica plica (Tropiduridae), on Grenada. IRC Reptiles & Amphibians, 19, 215–216.Google Scholar
  34. Hoogmoed, M. S., & Dixon, J. R. (1977). A new species of Bachia (Teiidae, Sauria) from Estado bolivar, Venezuela, with notes on the zoogeography of the genus. Zoologische Mededelingen, 51, 25–31.Google Scholar
  35. Inger, R. F., & Voris, H. K. (2001). The biogeographical relations of the frogs and snakes of Sundaland. Journal of Biogeography, 28, 863–891.CrossRefGoogle Scholar
  36. John, R. R., Rivera Rodríguez, M. J., Bentz, E. J., Bauer, A. M., & Powell, R. (2012). Bachia heteropa. Catalogue of American Amphibians and Reptiles (CAAR), 2012(894), 1–9.Google Scholar
  37. Jowers, M. J., Lehtinen, R. M., Downie, R. J., Georgiadis, A. P., & Murphy, J. C. (2015). Molecular phylogenetics of the glass frog Hyalinobatrachium orientale (Anura: Centrolenidae): Evidence for Pliocene connections between mainland Venezuela and the island of Tobago. Mitochondrial DNA, 26, 613–618.CrossRefPubMedGoogle Scholar
  38. Kocher, T. D., Thomas, W. K., Meyer, A., Paabo, S., Villablanca, F., & Wilson, A. C. (1989). Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences, 86, 6196–6200.CrossRefGoogle Scholar
  39. Kohlsdorf, T., Lynch, V. J., Rodrigues, M. T., Brandley, M. C., & Wagner, G. P. (2010). Data and data interpretation in the study of limb evolution: A reply to Galis et al. on the revolution of digits in the lizard genus Bachia. Evolution, 64, 2477–2485.Google Scholar
  40. Kohlsdorf, T., & Wagner, G. P. (2006). Evidence for the reversibility of digit loss: A phylogenetic study of limb evolution in Bachia (Gymnophthalmidae: Squamata). Evolution, 60, 1896–1912.CrossRefPubMedGoogle Scholar
  41. Lacépède, B. G. É. (1789). Historie Naturelle des Quadrupèdes Ovipares et des Serpens (Vol. 2). Paris: Hôtel de Thou.Google Scholar
  42. Lanfear, R., Calcott, B., Simon, Y. W., & Guindon, S. (2012). PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Phylogenetics and Evolution, 28, 1695–1701.Google Scholar
  43. Larkin, M. A., Backshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics Application Note, 23, 2947–2948.CrossRefGoogle Scholar
  44. Lee, M. S. (1998). Convergent evolution and character correlation in burrowing reptiles: Towards a resolution of squamate relationships. Biological Journal of the Linnean Society, 65, 369–453.CrossRefGoogle Scholar
  45. Lichtenstein, H., & von Martens, E. (1856). Nomenclator reptilium et amphibiorum Musei Zoologici Berolinensis. Namenverzeichniss der in der zoologischen Sammlung der Königlichen Universität zu Berlin aufgestellten Arten von Reptilien und Amphibien nach ihren Ordnungen, Familien und Gattungen. Berlin: Königliche Akademie der Wissenschaften.Google Scholar
  46. Meyer, C. P. (2003). Molecular systematics of cowries (Gastropoda: Cypraeidae) and diversification patterns in the tropics. Biological Journal of the Linnean Society, 79, 401–459.CrossRefGoogle Scholar
  47. Mijares-Urrutia, A., & Arends, A. R. (1999). Additional new regional and local records of amphibians and reptiles from the state of Falcón, Venezuela. Herpetological Review, 30, 115.Google Scholar
  48. Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE). (pp. 1–8).Google Scholar
  49. Murphy, J. C. (1996). Crossing Bond’s line: The herpetofaunal exchange between the eastern Caribbean and mainland South America (pp. 207–216). In: R. W. Henderson, & R. O. Powell (Eds), Contributions to west Indian herpetology: A tribute to Albert Schwartz. Contributions to Herpetology. Ithaca, New York: SSAR.Google Scholar
  50. Murphy, J. C. (1997). Amphibians and reptiles of Trinidad and Tobago. Malabar: Krieger Publishing.Google Scholar
  51. Murphy, J. C., & Jowers, M. J. (2013). Treerunners, cryptic lizards of the Plica plica group (Squamata, Sauria, Tropiduridae) of northern South America. ZooKeys, 355, 49–77.CrossRefGoogle Scholar
  52. Palumbi, S. (1996). Nucleic acids II: The polymerase chain reaction. In D. M. Hillis, C. Moritz, & B. K. Mable (Eds.), Molecular Systematics (pp. 205–248). Sunderland: Sinauer.Google Scholar
  53. Parham, J. F., & Papenfuss, T. J. (2009). High genetic diversity among fossorial lizard populations (Anniella pulchra) in a rapidly developing landscape (Central California). Conservation Genetics, 10, 169–176.CrossRefGoogle Scholar
  54. Peters, D. B., & Donoso-Barros, R. (1970). Catalogue of the neotropical Squamata. Part II. Lizards and amphisbaenians. United States National Museum Bulletin, 297, 1–347.CrossRefGoogle Scholar
  55. Prudente, A. L. C., & Passos, P. (2010). New cryptic species of Atractus (Serpentes: Dipsadidae) from Brazilian Amazonia. Copeia, 2010, 397–404.CrossRefGoogle Scholar
  56. Pyron, R. A., & Burbrink, F. T. (2009). Systematics of the common Kingsnake (Lampropeltis getula; Serpentes: Colubridae) and the burden of heritage in taxonomy. Zootaxa, 2241, 22–32.Google Scholar
  57. Rambaut, A., & Drummond, A. J. (2015a). LogCombiner v1.8.2. http://beast.bio.ed.ac.uk. Accessed June 2018.
  58. Rambaut, A., & Drummond, A. J. (2015b). TreeAnnotator v1.8.2: MCMC output analysis. http://beast.bio.ed.ac.uk. Accessed June 2018.
  59. Rambaut, A., Suchard, M. A., Xie, W., Drummond, A. J. (2013). Tracer v.1.6.0: MCMC trace analysis tool. http://beast.bio.ed.ac.uk. Accessed June 2018.
  60. Ribeiro-Júnior, M. A., da Silva, M. B., & Lima, J. D. (2016). A new species of Bachia gray 1845 (Squamata: Gymnophthalmidae) from the eastern Guiana shield. Herpetologica, 72, 148–156.CrossRefGoogle Scholar
  61. Rivas, G. A., Molina, C. R., Ugueto, G. N., Barros, T. R., & Barrio-Amorós, C. L. (2012). Reptiles of Venezuela: An updated and commented checklist. Zootaxa, 3211, 1–64.Google Scholar
  62. Ronquist, F., & Huelsenbeck J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572–1574.Google Scholar
  63. Roux, J. (1929). Sur Deux reptiles nouveau du Vénézuela. Verhandlungen dem Naturforschenden Gesellschaft, 40, 29–34.Google Scholar
  64. Ruthven, A. G. (1925). Lizards of the genus Bachia. Proceedings Boston Society of Natural History, 38, 101–109.Google Scholar
  65. Saint, K. M., Austin, C. C., Donnellan, S. C., & Hutchinson, M. N. (1998). C-Mos, a nuclear marker useful for squamate phylogenetic analysis. Molecular Phylogenetics and Evolution, 10, 259–263.CrossRefPubMedGoogle Scholar
  66. Salvi, D., Perera, A., Sampaio, F. L., Carranza, S., & Harris, D. J. (2018). Underground cryptic speciation within the Maghreb: Multilocus phylogeography sheds light on the diversification of the checkerboard worm lizard Trogonophis wiegmanni. Molecular Phylogenetics and Evolution, 120, 118–128.CrossRefPubMedGoogle Scholar
  67. Sampaio, F. L., Harris, D. J., Perera, A., & Salvi, D. (2015). Phylogenetic and diversity patterns of Blanus worm lizards (Squamata: Amphisbaenia): Insights from mitochondrial and nuclear gene genealogies and species tree. Journal of Zoological Systematics and Evolutionary Research, 53, 45–54.CrossRefGoogle Scholar
  68. Schwartz, A., & Thomas, R. (1975). Check-list of west Indian amphibians and reptiles. Carnegie Museum of Natural History Special Publication, 1, 1–234.Google Scholar
  69. Shreve, B. (1947). On Venezuelan reptiles and amphibians collected by Dr. G. Kugler. Bulletin of the Museum of Comparative Zoology, 99, 517–537.Google Scholar
  70. Siler, C. D., Diesmos, A. C., Alcala, A. C., & Brown, R. M. (2011). Phylogeny of Philippine slender skinks (Scincidae: Brachymeles) reveals underestimated species diversity, complex biogeographical relationships, and cryptic patterns of lineage diversification. Molecular Phylogenetics and Evolution, 59, 53–65.CrossRefPubMedGoogle Scholar
  71. Silvestro, D., & Michalak, I. (2010). A user-friendly graphical front-end for phylogenetic analyses using RAxML (Stamatakis, 2006). Organisms Diversity and Evolution, 12, 335–337.CrossRefGoogle Scholar
  72. Teixeira, M., Jr., Dal Vechio, F., Nunes, P. M., Mollo Neto, A., Storti, L. F., Junqueira, R. A., Freire Dias, P. H., & Rodrigues, M. T. (2013). A new species of Bachia gray, 1845 (Squamata: Gymnophthalmidae) from the western Brazilian Amazonia. Zootaxa, 3636, 401–420.CrossRefPubMedGoogle Scholar
  73. Thomas, R. (1965). The smaller teiid lizards (Gymnophthalmus and Bachia) of the southeastern Caribbean. Proceedings of the Biological Society of Washington, 78, 141–154.Google Scholar
  74. Tucker, D. B., Hedges, S. B., Colli, G. R., Pyron, R. A., & Sites, J. W., Jr. (2017). Genomic timetree and historical biogeography of Caribbean island ameiva lizards (Pholidoscelis: Teiidae). Ecology and Evolution, 7, 7080–7090.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Uetz, P., Freed, P., & Hošek, J. (Eds.) (2018). The Reptile Database, http://www.reptile-database.org. Accessed Bachia. 21 Nov 2018.
  76. Underwood, G. (1962). Reptiles of the eastern Caribbean. Caribbean Affairs (N.S.), 1, 1–192.Google Scholar
  77. Vanzolini, P. E. (1961). Bachia: especies Brasileiras e conceito generico (Sauria: Teiidae). Papéis Avulsos Zoologia, 14, 193–209.Google Scholar
  78. Warne, A. G., Meade, R. H., White, W. A., Guevara, E. H., Gibeaut, J., Smyth, R. C., Aslan, A., & Tremblay, T. (2002). Regional controls on geomorphology, hydrology, and ecosystem integrity in the Orinoco Delta, Venezuela. Geomorphology, 44, 273–307.CrossRefGoogle Scholar
  79. Whittaker, R. J., & Fernández-Palacios, J. M. (2007). Island biogeography: Ecology, evolution, and conservation. Oxford University Press.Google Scholar
  80. Wiens, J. J., Brandley, M. C., & Reeder, T. W. (2006). Why does a trait evolve multiple times within a clade? Repeated evolution of snakelike body form in squamate reptiles. Evolution, 60, 123–141.PubMedGoogle Scholar
  81. Zhang, J., Kapli, P., Pavlidis, P., & Stamatakis, A. A. (2013). General species delimitation method with applications to phylogenetic placements. Bioinformatics, 29, 2869–2876.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zheng, Y., & Wiens, J. J. (2016). Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Molecular Phylogenetics and Evolution, 94, 537–547.CrossRefPubMedGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2019

Authors and Affiliations

  1. 1.Science and EducationField Museum of Natural HistoryChicagoUSA
  2. 2.CIBIO/InBIO (Centro de Investigação em Biodiversidade e Recursos Genéticos)Universidade do PortoVairãoPortugal
  3. 3.Department of HealthLife and Environmental Sciences-University of L’AquilaL’AquilaItaly
  4. 4.North Carolina State Museum of Natural SciencesRaleighUSA
  5. 5.Department of BiologyHoward UniversityWashingtonUSA
  6. 6.Laboratory of Behavioral Ecology and Evolution, School of Biological SciencesSeoul National UniversitySeoulRepublic of Korea
  7. 7.Laboratory of Animal Communication, Division of EcoScienceEwha Womans UniversitySeoulRepublic of Korea
  8. 8.National Institute of EcologySeocheon-gunSouth Korea

Personalised recommendations