Advertisement

Organisms Diversity & Evolution

, Volume 19, Issue 2, pp 341–361 | Cite as

The hills are alive with geckos! A radiation of a dozen species on sky islands across peninsular India (Squamata: Gekkonidae, Hemiphyllodactylus) with the description of three new species

  • Ishan AgarwalEmail author
  • Akshay Khandekar
  • Varad B. Giri
  • Uma Ramakrishnan
  • K. Praveen Karanth
Original Article

Abstract

Sky Islands are high-elevation environments that are separated by warmer, low elevations, forming natural patches of unique montane habitat that often persist through changing climates. Peninsular India was ancestrally forested and has gradually become more arid since at least the Oligocene, and open landscapes have dominated since the middle-late Miocene. Mesic forests today are largely restricted to coastal mountains and some other montane habitats. A mitochondrial phylogeny and fossil-calibrated timetree of Indian Hemiphyllodactylus reveal an Indochinese origin and an endemic radiation with 12 species-level lineages, where a single species was known, that diversified in the Oligocene-Miocene across montane forest habitats in the Eastern Ghats and south India. The phylogeny also suggests the discontinuous Eastern Ghats mountain range encompasses two distinct biogeographic entities: north and south of the Pennar/Krishna-Godavari River basins. This study highlights the deep history of the region and the importance of montane habitats as islands of unique biodiversity that have persisted through millions of years of changing climates. We describe three new species: Hemiphyllodactylus arakuensis sp. nov., H. jnana sp. nov. and H. kolliensis sp. nov. from montane habitats above 1000 m. The montane habitats of these species are emerging hotspots of reptile endemism, and this study emphasizes the need for systematic biodiversity inventory across India to uncover basic patterns of diversity and distribution.

Keywords

Biogeography Divergence dating Eastern Ghats Systematics Western Ghats 

Notes

Acknowledgments

We thank Pratyush P Mohapatra, Aparna Lajmi, R Chaitanya and the Evolutionary Ecology Lab (CES, IISc; Saunak Pal, SP Vijayakumar and Kartik Shanker) for contributing tissues used in this study. We also thank the Andhra Pradesh and Tamil Nadu Forest Departments for collection permits and hospitality and Tarun Khichi, Aniruddha Datta-Roy, V Deepak, R Chaitanya, MS Chaitra, R. Padmawathe and Nikhil Gaitonde for assistance in the field. Lee Grismer helped with r scripts and discussion on multivariate analyses, Maitreya Sil with Lagrange analyses, SR Ganesh with sampling locations in the Shevaroys, and Saunak Pal provided data on BNHS specimens. Joshua Muyiwa, Luis Ceriaco, and Shreya Yadav contributed to nomenclatural discussions. The two reviewers provided useful inputs.

Funding information

Partial funding came from the Ministry of Environment and Forests, the Department of Atomic Energy (2012/21/06/BRNS to Uma Ramakrishnan), the Department of Science and Technology (DST grant SR/SO/AS-57/2009 to Praveen Karanth), Government of India and National Science Foundation (USA) grant DEB 0844523 to Aaron M Bauer.

Compliance with ethical standards

Ethical approval

No live animals were used in experiments, and specimens were collected with permits from the Andhra Pradesh and Tamil Nadu forest Departments, besides from private land and other non-forest areas. Specimens collected for this study were euthanized with halothane, tissue vouchers stored in ethanol and whole specimens fixed with formalin. This study was approved by the National Centre for Biological Sciences, Bangalore (NCBS) animal ethics committee.

Supplementary material

13127_2019_392_MOESM1_ESM.xlsx (21 kb)
Table S1 Sequences used in this study. Museum abbreviations as follows: ABTC, Australian Biological Tissue Collection, South Australian Museum, Adelaide; ADS, Anslem de Silva field series; AMB, Aaron M. Bauer field series; AMS, Australian Museum; BPBM, Bernice P. Bishop Museum; BNHS, Bombay Natural History Society, Mumbai; CAS, California Academy of Sciences; CD, Charles Daugherty field series; CES G (Karanth lab field series) and CES L (Kartik Shanker lab field series), Centre for Ecological Sciences, Bangalore; CHUNB, Coleção Herpetológica da Universidade de Brasília; CJS, Christopher J. Schneider field series; CUMZ, Chulalongkorn University Museum of Zoology; DB, Don Buden; DJH, D. James Harris; EBG, Eli B. Greenbaum field series; FG/MV, Frank Glaw and Miguel Vences; FGZC, Frank Glaw; FLMNH, Florida Museum of Natural History; FT, frozen tissue collection of Victoria University of Wellington; GVH, Gerald V Haagner; IEBR, Institute of Ecology and Biological Resources (Hanoi); IRSNB, Institute des Sciences Naturelles du Belgique, Brussels; ITB, Institute of Tropical Biology Collection of Zoology; JB, Jon Boone; JEM, John E. Measey; KU, University of Kansas Natural History Museum, Lawrence; LJAMM, Luciano J. Avila and Mariana Morando; LLG, L. Lee Grismer field series; LSHUC, La Sierra University Herpetological Collection, L. Lee Grismer; MCZ, Museum of Comparative Zoology, Harvard University; MTSN, Trento Museum of Natural Sciences; MV, Museum of Victoria; MVZ, Museum of Vertebrate Zoology, Berkeley; MZUSP, Museu de Zoologia da Universidade de São Paulo; NCBS, National Centre for Biological Sciences, Bangalore; NJNUh, Nanjing Normal University, Jiangsu, China; NMZ, National Museum of Zimbabwe; PEM, Port Elizabeth Museum; PMNH, Pakistan Museum of Natural History; QM, Queensland Museum; RAH, Rod A. Hitchmough; RMB, Rafe M. Brown; ROM, Royal Ontario Museum; SAM, South Australian Museum; SC, Salvador Carranza; SYS, the Museum of Biology, Sun Yat-sen University (SYS), Guangzhou; TG, Tony Gamble; USNM, National Museum of Natural History, Smithsonian Institution; WBJ, W. Bryan Jennings; WDH, Wulf D. Haacke; YPM, Yale Peabody Museum, New Haven; ZCMV, Miguel Vences; ZMKU TM, Zoological Museum, Kasetsart University, Bangkok, Thailand; ZRC, Zoological Reference Collection, Raffles Museum; ZSM, Zoologische Staatssammlung München. (XLSX 21.2 kb)
13127_2019_392_MOESM2_ESM.xlsx (10 kb)
Table S2 Pairwise uncorrected ND2 sequence divergence across Indian Hemiphyllodactylus, numbers in bold along diagonal represent intraspecific diversity. (XLSX 9 kb)
13127_2019_392_MOESM3_ESM.pdf (258 kb)
Figure S1 Complete BEAST MCC tree from divergence dating analyses. (PDF 258 kb)
13127_2019_392_Fig4_ESM.png (5.7 mb)
Figure S2

Hemiphyllodactylus aurantiacus in life (adult male AK 245). (PNG 5854 kb)

13127_2019_392_MOESM4_ESM.tif (6.9 mb)
High Resolution Image (TIF 7040 kb)
13127_2019_392_Fig5_ESM.png (5.1 mb)
Figure S3

Hemiphyllodactylus jnana sp. nov. in life (adult male BNHS 1936). (PNG 5181 kb)

13127_2019_392_MOESM5_ESM.tif (6.1 mb)
High Resolution Image (TIF 6279 kb)
13127_2019_392_Fig6_ESM.png (8.6 mb)
Figure S4

Dorsal and ventral view of adult male holotype (AQ 191) of Hemiphyllodactylus jnana sp. nov. (PNG 8816 kb)

13127_2019_392_MOESM6_ESM.tif (14.1 mb)
High Resolution Image (TIF 14443 kb)
13127_2019_392_Fig7_ESM.png (1.4 mb)
Figure S5

Type series of Hemiphyllodactylus jnana sp. nov. (PNG 1417 kb)

13127_2019_392_MOESM7_ESM.tif (7 mb)
High Resolution Image (TIF 7195 kb)
13127_2019_392_Fig8_ESM.png (7.5 mb)
Figure S6

Hemiphyllodactylus kolliensis sp. nov. in life (from top to bottom: dorsal and ventral view of adult male holotype CES G138, dorsal view of adult female paratype AK 277). (PNG 7698 kb)

13127_2019_392_MOESM8_ESM.tif (8.9 mb)
High Resolution Image (TIF 9160 kb)
13127_2019_392_Fig9_ESM.png (11.5 mb)
Figure S7

Dorsal and ventral view of adult male holotype (CES G138) of Hemiphyllodactylus kolliensis sp. nov. (PNG 11794 kb)

13127_2019_392_MOESM9_ESM.tif (18.8 mb)
High Resolution Image (TIF 19231 kb)
13127_2019_392_Fig10_ESM.png (2.2 mb)
Figure S8

Type series of Hemiphyllodactylus kolliensis sp. nov. (PNG 2235 kb)

13127_2019_392_MOESM10_ESM.tif (6.1 mb)
High Resolution Image (TIF 6240 kb)
13127_2019_392_Fig11_ESM.png (7.7 mb)
Figure S9

Hemiphyllodactylus arakuensis sp. nov. in life (from top to bottom: dorsal view of adult male holotype CES G446, dorsal and ventral view of adult male paratype CES G068). (PNG 7907 kb)

13127_2019_392_MOESM11_ESM.tif (9.4 mb)
High Resolution Image (TIF 9598 kb)
13127_2019_392_Fig12_ESM.png (9.3 mb)
Figure S10

Dorsal and ventral view adult male holotype (CES G446) of Hemiphyllodactylus arakuensis sp. nov. (PNG 9519 kb)

13127_2019_392_MOESM12_ESM.tif (15.4 mb)
High Resolution Image (TIF 15777 kb)
13127_2019_392_Fig13_ESM.png (1.8 mb)
Figure S11

Type series of Hemiphyllodactylus arakuensis sp. nov. (PNG 1801 kb)

13127_2019_392_MOESM13_ESM.tif (9.5 mb)
High Resolution Image (TIF 9694 kb)

References

  1. Addo-Bediako, A., Chown, S. L., & Gaston, K. J. (2003). Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society of London B: Biological Sciences, 267, 739–745.CrossRefGoogle Scholar
  2. Aengals, R. (2013). First record of Indian slender gecko (Hemiphyllodactylus aurantiacus) from Yelagiri hills, Tamil Nadu. Cobra, 7, 24–26.Google Scholar
  3. Aengals, R., & Ganesh, S. R. (2013). Rhinophis goweri — a new species of shieldtail snake from the southern Eastern Ghats, India. Russian Journal of Herpetology, 20, 61–65.Google Scholar
  4. Agarwal, I. (2016). Two new species of ground-dwelling Cyrtodactylus (Geckoella) from the Mysore Plateau, South India. Zootaxa, 4193, 228–244.CrossRefGoogle Scholar
  5. Agarwal, I., & Karanth, K. P. (2015). A phylogeny of the only ground-dwelling radiation of Cyrtodactylus (Squamata, Gekkonidae): diversification of Geckoella across peninsular India and Sri Lanka. Molecular Phylogenetics and Evolution, 82, 193–199.CrossRefGoogle Scholar
  6. Agarwal, I., & Ramakrishnan, U. (2017). A phylogeny of open-habitat lizards (Squamata: Lacertidae: Ophisops) supports the antiquity of Indian grassy biomes. Journal of Biogeography, 44, 2021–2032.CrossRefGoogle Scholar
  7. Agarwal, I., Giri, V. B., & Bauer, A. M. (2011). A new cryptic rock-dwelling Hemidactylus (Squamata: Gekkonidae) from South India. Zootaxa, 2765, 21–37.CrossRefGoogle Scholar
  8. Agarwal, I., Datta-Roy, A., Bauer, A. M., & Giri, V. B. (2012). Rediscovery of Geckoella jeyporensis (Squamata: Gekkonidae), with notes on morphology, coloration and habitat. Hamadryad, 36, 17–24.Google Scholar
  9. Agarwal, I., Wilkinson, M., Mohapatra, P. P., Dutta, S. K., Giri, V. B., & Gower, D. J. (2013). The first teresomatan caecilian (Amphibia: Gymnophiona) from the Eastern Ghats of India – a new species of Gegeneophis Peters, 1880. Zootaxa, 3696, 534–546.CrossRefGoogle Scholar
  10. Ali, J. R., & Aitchison, J. C. (2008). Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth Science Reviews, 88, 145–166.CrossRefGoogle Scholar
  11. Bauer, A. M., & Das, I. (1999). The systematic status of the endemic South Indian gecko Hemiphyllodactylus aurantiacus (Beddome, 1870). Journal of South Asian Natural History, 4, 213–218.Google Scholar
  12. Beddome, R. H. (1863). Descriptions of new species of the family Uropeltidae from Southern India, with notes on other little-known species. Proceedings of the Zoological Society of London, 1863, 225–229.Google Scholar
  13. Beddome, R. H. (1870). Descriptions of some new lizards from the Madras Presidency. Madras Monthly journal of Medical Science, 1, 30–35.Google Scholar
  14. Beddome, R. H. (1878). Descriptions of new reptiles from the Madras Presidency. Proceedings of the Zoological Society of London, 1877, 685–686.Google Scholar
  15. Bell, R. C., Parra, J. L., Tonione, M., Hoskin, C. J., MacKenzie, J. B., Williams, S. E., & Moritz, C. (2010). Patterns of persistence and isolation indicate resilience to climate change in montane rainforest lizards. Molecular Ecology, 19, 2531–2544.Google Scholar
  16. Bleeker, P. (1860). Reptilien van Agam. Natuurkundig Tijdschrift voor Nederlandsch Indie. Batavia, 20, 325–329.Google Scholar
  17. Chandramouli, S. R., Harikrishnan, S., & Vasudevan, K. (2012). Record of the Indo-Pacific Slender Gecko Hemiphyllodactylus typus (Squamata: Sauria: Gekkonidae) from the Andaman Islands, India. Journal of Threatened Taxa, 4, 2536–2538.CrossRefGoogle Scholar
  18. Chetri, B., & Bhupathy, S. (2010). Three little known reptile species from the Araku Valley, Eastern Ghats with notes on their distribution. Journal of Threatedned Taxa, 2, 1109–1113.CrossRefGoogle Scholar
  19. Cobos, A. L., Grismer, L. L., Wood, P. L., Jr., Quah, E. S. H., Anuar, S., & Muin, M. A. (2016). Phylogenetic relationships of geckos of the Hemiphyllodactylus harterti group, a new species from Penang Island, peninsular Malaysia, and a likely case of true cryptic speciation. Zootaxa, 4107, 367–380.CrossRefGoogle Scholar
  20. Daniels, R. J. R. (1994). Notes on a rare south Indian Gecko, Hemiphyllodactylus typus Beddome. Dactylus, 2, 132–133.Google Scholar
  21. Daniels, R. J. R., & Kumar, M. V. R. (1998). Amphibians and reptiles of Kolli Hills. Cobra, 31, 3–5.Google Scholar
  22. Daniels, R. J. R., & Vencatesan, J. (1998). Ecosystem flips in cultural landscapes: the case of Kolli Hills. Current Science, 75, 353–355.Google Scholar
  23. Das, I., & Bauer, A. M. (2000). Two new species of Cnemaspis (Sauria: Gekonidae) from Tamil Nadu, southern India. Russian Journal of Herpetology, 7, 17–28.Google Scholar
  24. Datta-Roy, A., Mohapatra, P. P., Dutta, S. K., Giri, V. B., Veerappan, D., Maddock, S. T., & Karanth, P. (2013). A long-lost relic from the Eastern Ghats: Morphology, distribution and habitat of Sepsophis punctatus Beddome, 1870 (Squamata: Scincidae). Zootaxa, 3670, 55–62.Google Scholar
  25. Daza, J. D., Stanley, E. L., Wagner, P., Bauer, A. M., & Grimaldi, D. A. (2016). Mid-Cretaceous amber fossils illuminate the past diversity of tropical lizards. Science Advances, 2, e1501080.  https://doi.org/10.1126/sciadv.1501080.CrossRefPubMedCentralGoogle Scholar
  26. Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences United States of America, 105, 6668–6672.  https://doi.org/10.1073/pnas.0709472105.CrossRefGoogle Scholar
  27. Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973.  https://doi.org/10.1093/molbev/mss075.CrossRefPubMedCentralGoogle Scholar
  28. Drummond, A. J., Rambaut, A., & Suchard M. A. (2016) BEAST 1.8.4. Available from http://beast.bio.ed.ac.uk/. Accessed 24 May 2018.
  29. Frishkoff, L. O., Hadly, E. A., & Daily, G. C. (2015). Thermal niche predicts tolerance to habitat conversion in tropical amphibians and reptiles. Global Change Biology, 21, 3901–3916.CrossRefGoogle Scholar
  30. Ganesh, S. R., & Arumugam, M. (2015). Microhabitat use and abundance estimates of understorey herpetofauna in the highlands of southern Eastern Ghats, India, with observations on roadkill mortalities. Asian Journal of Conservation Biology, 4, 143–150.Google Scholar
  31. Ganesh, S. R., & Arumugam, M. (2016). Species richness of montane herpetofauna of southern Eastern Ghats, India: a historical resume and a descriptive checklist. Russian Journal of Herpetology, 23, 7–24.Google Scholar
  32. Ganesh, S. R., Aengals, R., & Ramanujam, E. (2014). Taxonomic reassessment of two Indian shieldtail snakes in the Uropeltis ceylanicus species group (Reptilia: Uropeltidae). Journal of Threatened Taxa, 6, 5305–5314.CrossRefGoogle Scholar
  33. Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J., & Wang, G. (2006). Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integrative and Comparative Biology, 46, 5–17.CrossRefGoogle Scholar
  34. Gillot, P., Lefevre, J., & Nativel, P. (1994). Model for the structural evolution of the volcanoes of Reunion Island. Earth and Planetary Science Letters, 122, 291–302.CrossRefGoogle Scholar
  35. Giri, V. B., Agarwal, I., & Bauer, A. M. (2009). Designation of a neotype for Cnemaspis mysoriensis (Jerdon 1853) (Sauria: Gekkonidae), with a redescription and notes on its distribution and habitat. Russian Journal of Herpetology, 16, 256–264.Google Scholar
  36. Giri, V. B., Bauer, A. M., Mohapatra, P. P., Srinivasulu, C., & Agarwal, I. (2017). A new species of large-bodied, tuberculate Hemidactylus Oken (Squamata: Gekkonidae) from the Eastern Ghats, India. Zootaxa, 4347, 331–345.CrossRefGoogle Scholar
  37. Gray, J. E. (1825). A synopsis of the genera of reptiles and Amphibia, with a description of some new species. Annals of Philosophy, 10, 193–217.Google Scholar
  38. Grismer, L. L., Wood, P. L., Jr., Anuar, S., Muin, M. A., Quah, E. S. H., McGuire, J. A., Brown, R. M., Van Tri, N., & Hong Thai, P. (2013). Integrative taxonomy uncovers high levels of cryptic species diversity in Hemiphyllodactylus Bleeker, 1860 (Squamata: Gekkonidae) and the description of a new species from peninsular Malaysia. Zoological Journal of the Linnaean Society, 169, 849–880.CrossRefGoogle Scholar
  39. Grismer, L. L., Riyanto, A., Iskandar, D. T., & McGuire, J. A. (2014a). A new species of Hemiphyllodactylus Bleeker, 1860 (Squamata: Gekkonidae) from Pulau Enggano, southwestern Sumatra, Indonesia. Zootaxa, 3821, 485–495.CrossRefGoogle Scholar
  40. Grismer, L. L., Wood, P. L., Jr., & Cota, M. (2014b). A new species of Hemiphyllodactylus Bleeker, 1860 (Squamata: Gekkonidae) from northwestern Thailand. Zootaxa, 3760, 67–68.CrossRefGoogle Scholar
  41. Grismer, L. L., Wood, P. L., Jr., Anuar, S., Quah, E. S. H., Muin, M. A., Onn, C. K., Sumarli, A. X., & Loredo, A. (2015). Repeated evolution of sympatric, palaeoendemic species in closely related, co-distributed lineages of Hemiphyllodactylus Bleeker, 1860 (Squamata: Gekkonidae) across a sky island archipelago in peninsular Malaysia. Zoological Journal of the Linnaean Society, 174, 859–876.CrossRefGoogle Scholar
  42. Grismer, L. L., Wood, P. L., Jr., Thura, M. K., Zin, T., Quah, E. S. H., Murdoch, M. L., Grismer, M. S., Lin, A., Kyaw, H., & Ngwe, L. (2017). Twelve new species of Cyrtodactylus Gray (Squamata: Gekkonidae) from isolated limestone habitats in east-central and southern Myanmar demonstrate high localized diversity and unprecedented microendemism. Zoological Journal of the Linnean Society, 182, 862–959.  https://doi.org/10.1093/zoolinnean/zlx057.CrossRefGoogle Scholar
  43. Grismer, L. L., Wood, P. L., Jr., Thura, M. K., Zin, T., Quah, E. S. H., Murdoch, M. L., Grismer, M. S., Lin, A., Kyaw, H., & Ngwe, L. (2018a). Phylogenetic taxonomy of Hemiphyllodactylus Bleeker, 1860 (Squamata: Gekkonidae) with descriptions of three new species from Myanmar. Journal of Natural History, 20, 1–98.Google Scholar
  44. Grismer, L., Zug, G. R., Thura, M. K., Grismer, M. S., Murdoch, M. L., Quah, E. S., & Lin, A. (2018b). Two more new species of Hemiphyllodactylus Bleeker (Squamata: Gekkonidae) from the Shan Hills of eastern Myanmar (Burma). Zootaxa, 4483, 295–316.CrossRefGoogle Scholar
  45. Grismer, L. L., Wood, P. L., Jr., Thura, M. K., Quah, E. S. H., Murdoch, M. L., Grismer, M. S., Herr, M. W., Lin, A., & Kyaw, H. (2018c). Three more new species of Cyrtodactylus (Squamata: Gekkonidae) from the Salween Basin of eastern Myanmar underscore the urgent need for the conservation of karst habitats. Journal of Natural History, 52, 1243–1294.  https://doi.org/10.1080/00222933.2018.1449911.CrossRefGoogle Scholar
  46. Guo, W., Zhou, K., Yan, J., & Li, P. (2015). A new species of Hemiphyllodactylus Bleeker, 1860 (Squamata: Gekkonidae) from western Yunnan, China. Zootaxa, 3974, 377–390.CrossRefGoogle Scholar
  47. Heinicke, M. P., Greenbaum, E., Jackman, T. R., & Bauer, A. M. (2011). Phylogeny of a trans-Wallacean radiation (Squamata, Gekkonidae, Gehyra) supports a single early colonization of Australia. Zoologica Scripta, 40, 584–602.CrossRefGoogle Scholar
  48. Huey, R. B., Deutsch, C. A., Tewksbury, J. J., Vitt, L. J., Hertz, P. E., Pérez, H. J. Á., & Garland, T. (2009). Why tropical forest lizards are vulnerable to climate warming. Proceedings of the Royal Society of London B: Biological Sciences, 276(1664), 1939–1948.CrossRefGoogle Scholar
  49. Hutchinson, M. N. (1997). The first fossil pygopod (Squamata, Gekkota), and a review of mandibular variation in living species. Memoirs-Queensland Museum, 41, 355–366.Google Scholar
  50. Iturralde-Vinent, M. A., & MacPhee, R. (1996). Age and paleogeographical origin of dominican amber. Science, 273, 1850–1852.CrossRefGoogle Scholar
  51. Janzen, D. H. (1967). Why mountain passes are higher in the tropics. The American Naturalist, 101, 233–249.CrossRefGoogle Scholar
  52. Javed, S. M. M., Rao, K. T., Srinivasulu, C., & Tampal, F. (2010). Distribution of Hemiphyllodactylus aurantiacus (Beddome, 1870) (Reptilia: Gekkonidae) in Andhra Pradesh, India. Journal of Threatened Taxa, 2, 639–643.CrossRefGoogle Scholar
  53. Jayakumar, S., Ramachandran, A., Bhaskaran, G., & Heo, J. (2009). Forest dynamics in the Eastern Ghats of Tamil Nadu, India. Environmental Management, 43, 326–345.CrossRefGoogle Scholar
  54. Jennings, W. B., Pianka, E. R., & Donnellan, S. (2003). Systematics of the lizard Family Pygopodidae with implications for the diversification of Australian temperate biotas. Systematic Biology, 52, 757–780.CrossRefGoogle Scholar
  55. Jerdon, T. C. (1853). Catalogue of reptiles inhabiting the peninsula of India. Journal of the Asiatic Society of Bengal, 22, 462–479.Google Scholar
  56. Joshi, J., & Karanth, P. K. (2010). Did southern Western Ghats of peninsular India serve as refugia for its endemic biota during the Cretaceous volcanism? Ecology and Evolution, 3, 3275–3282.  https://doi.org/10.1002/ece3.603.Google Scholar
  57. Karanth, P. K. (2015). An island called India: phylogenetic patterns across multiple taxonomic groups reveal endemic radiations. Current Science, 108, 1847–1851.Google Scholar
  58. Kluge, A. G. (1995). Cladistic relationships of sphaerodactyl lizards. American Museum Novitates, 3139, 1–23.Google Scholar
  59. Lee, M. S. Y., Oliver, P. M., and Hutchinson, M. N. (2009a) Phylogenetic uncertainty and molecular clock calibrations: a case study of legless lizards (Pygopodidae, Gekkota). Molecular Phylogenetics and Evolution, 50, 661–666.  https://doi.org/10.1016/j.ympev.2008.11.024.
  60. Lee, M. S. Y., Hutchinson, M. N., Worthy, T. H., Archer, M., Tennyson, A. J. D., Worthy, J. P., & Scofield, R. P. (2009b). Miocene skinks and geckos reveal long-term conservatism of New Zealand’s lizard fauna. Biology Letters, 5, 833–837.CrossRefPubMedCentralGoogle Scholar
  61. Licht, A., Cappelle, M. V., Abels, H. A., Ladant, J. B., Alexandre, J. T., Lanord, C. F., Donnadieu, Y., Vandenberghe, J., Rigaudier, T., Lecuyer, C., Terry, D., Jr., Adriaens, R., Boura, A., Guo, Z., Naing Soe, A., Quade, J., DupontNivet, G., & Jaeger, J. J. (2014). Asian monsoons in a late Eocene greenhouse world. Nature, 513, 501–506.  https://doi.org/10.1038/nature13704.CrossRefGoogle Scholar
  62. Macey, J. R., Larson, A., Ananjeva, N. B., Fang, Z., & Papenfuss, T. J. (1997). Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Molecular Biology and Evolution, 14, 91–104.CrossRefGoogle Scholar
  63. Maddison, W. P., Maddison, D. R. (2018). Mesquite: a modular system for evolutionary analysis. Version 3.51 http://www.mesquiteproject.org.
  64. McCain, C. M. (2009). Vertebrate range sizes indicate that mountains may be ‘higher’ in the tropics. Ecology Letters, 12, 550–560.CrossRefGoogle Scholar
  65. Mertens, R. (1966). Die nichtmadagassichen Arten und Unterarten der Geckonengattung Phelsuma. Senckenbergiana Biologica, 47, 85–110.Google Scholar
  66. Molnar, P., & Rajagopalan, B. (2012). Late Miocene upward and outward growth of eastern Tibet and decreasing monsoon rainfall over the northwestern Indian subcontinent since 10 Ma. Geophysical Research Letters, 39, L09702.  https://doi.org/10.1029/2012GL051305.CrossRefGoogle Scholar
  67. Morley, R. J. (2000). Origin and evolution of tropical rain forests. Chichester: Wiley.Google Scholar
  68. Morley, R. J. (2007). Cretaceous and tertiary climate change and the past distribution of megathermal rainforests. In M. B. Bush & J. R. Flenley (Eds.), Tropical rainforest responses to climatic change (pp. 1–31). Berlin: Springer.Google Scholar
  69. Nguyen, T. Q., Botov, A., Le, M. D., Nophaseud, L., Zug, G., Bonkowski, M., & Ziegler, T. (2014). A new species of Hemiphyllodactylus (Reptilia: Gekkonidae) from northern Laos. Zootaxa, 3827, 45–56.CrossRefGoogle Scholar
  70. Pound, M. J., Haywood, A. M., Salzmann, U., & Riding, J. B. (2012). Global vegetation dynamics and latitudinal temperature gradients during the mid to late Miocene (15.97–5.33 Ma). Earth Science Reviews, 112, 1–22.CrossRefGoogle Scholar
  71. Raheem, D. C., Taylor, H., Ablett, J., Preece, R. C., Aravind, N. A., & Naggs, F. (2014). A systematic revision of the land snails of the Western Ghats of India. Tropical Natural History Supplement, 4, 1–294.Google Scholar
  72. Ramachandran, V., Robin, V. V., Tamma, K., & Ramakrishnan, U. (2017). Climatic and geographic barriers drive distributional patterns of bird phenotypes within peninsular India. Journal of Avian Biology, 48, 620–630.CrossRefGoogle Scholar
  73. Rambaut, A., Suchard, M. A., Xie, D., & Drummond, A. J. (2014) Tracer 1.6. Retrieved from: http://beast.bio.ed.ac.uk/Tracer. Accessed 03/13/2016.
  74. Raxworthy, C. J., Pearson, R. G., Rabibisoa, N., Rakotondrazafy, A. M., Ramanamanjato, J. B., Raselimanana, A. P., Wu, S., Nussbaum, R. A., & Stone, D. A. (2008). Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar. Global Change Biology, 14, 1703–1720.CrossRefPubMedCentralGoogle Scholar
  75. Ree, R. H., & Smith, S. A. (2008). Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology, 57, 4–14.CrossRefGoogle Scholar
  76. Robin, V. V., Sinha, A., & Ramakrishnan, U. (2010). Ancient geographical gaps and paleo-climate shape the phylogeography of an endemic bird in the sky islands of southern India. PLoS One, 5(10), e13321.  https://doi.org/10.1371/journal.pone.0013321.CrossRefPubMedCentralGoogle Scholar
  77. Robin, V. V., Vishnudas, C. K., Gupta, P., & Ramakrishnan, U. (2015). Deep and wide valleys drive nested phylogeographic patterns across a montane bird community. Proceedings of the Royal Society of London B: Biological Sciences, 282, 20150861.CrossRefGoogle Scholar
  78. Robin, V. V., Vishnudas, C. K., Gupta, P., Rheindt, F. E., Hooper, D. M., Ramakrishnan, U., & Reddy, S. (2017). Two new genera of songbirds represent endemic radiations from the Shola Sky Islands of the Western Ghats, India. BMC Evolutionary Biology, 17, p31.CrossRefGoogle Scholar
  79. Rocha, S., Rosler, H., Gehring, P. S., Glaw, F., Posada, D., Harris, D. J., & Vences, M. (2010). Phylogenetic systematics of day geckos, genus Phelsuma, based on molecular and morphological data (Squamata: Gekkonidae). Zootaxa, 2429, 1–28.CrossRefGoogle Scholar
  80. Sanyal, D. P., Gupta, B. D., & Gayen, N. C. (1993). Reptilia. In A. K. Ghosh (Ed.), State Fauna Series 5. Fauna of Andhra Pradesh, Part I (pp. 1–63). Kolkata: Zoological Survey of India.Google Scholar
  81. Silvestro, D., & Michalak, I. (2012). raxmlGUI: a graphical front-end for RAxML. Organisms, Diversity and Evolution, 12, 335–337.  https://doi.org/10.1007/s13127-011-0056-0.CrossRefGoogle Scholar
  82. Skipwith, P. L., Bauer, A. M., Jackman, T. R., & Sadlier, R. A. (2016). Old but not ancient: coalescent species tree of New Caledonian geckos reveals recent post- inundation diversification. Journal of Biogeography, 43, 1266–1276.  https://doi.org/10.1111/jbi.12719.CrossRefGoogle Scholar
  83. Smith, M. A. (1935). The fauna of British India, including Ceylon and Burma. In Reptilia and Amphibia. Volume II. Sauria. London: Taylor and Francis.Google Scholar
  84. Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihoodbased phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690.  https://doi.org/10.1093/bioinformatics/btl446.CrossRefGoogle Scholar
  85. Sukprasert, A., Sutthiwises, S., Lauhachinda, V., & Taksintum, W. (2018). Two new species of Hemiphyllodactylus Bleeker (Squamata: Gekkonidae) from Thailand. Zootaxa, 4369, 363–376.CrossRefGoogle Scholar
  86. Sung, Y., Lee, W. H., NG, H., Zhang, Y., & Yang, J. H. (2018). A new species of Hemiphyllodactylus (Squamata: Gekkonidae) from Hong Kong. Zootaxa, 4392, 361–373.CrossRefGoogle Scholar
  87. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.  https://doi.org/10.1093/molbev/msr121.CrossRefPubMedCentralGoogle Scholar
  88. Tewksbury, J. J., Huey, R. B., & Deutsch, C. A. (2008). Putting the heat on tropical animals. Science, 320, 1296–1297.  https://doi.org/10.1126/science.1159328.CrossRefGoogle Scholar
  89. Tolley, K. A., Colin, R. T., Measey, G. J., Menegon, M., Branch, W. R., & Matthee, C. (2011). Ancient forest fragmentation or recent radiation? Testing refugial speciation models in chameleons within an African biodiversity hotspot. Journal of Biogeography, 38, 1748–1760.CrossRefGoogle Scholar
  90. Tri, N. V., Grismer, L. L., Thai, P. H., & Wood, P. L., Jr. (2014). A new species of Hemiphyllodactylus Bleeker, 1860 (Squamata: Gekkonidae) from Ba Na–Nui Chua Nature Reserve, Central Vietnam. Zootaxa, 3760, 539–552.CrossRefGoogle Scholar
  91. Vijayakumar, S. P., Menezes, R. C., Jayarajan, A., & Shanker, K. (2016). Glaciations, gradients, and geography: multiple drivers of diversification of bush frogs in the Western Ghats Escarpment. Proceedings of the Royal Society of London B: Biological Sciences, 283(1836), 20161011.CrossRefGoogle Scholar
  92. Wiens, J. J., & Graham, C. H. (2005). Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology and Systematics, 36, 519–539.CrossRefGoogle Scholar
  93. Wood, P. L., Jr., Heinicke, M. P., Jackman, T. R., & Bauer, A. M. (2012). Phylogeny of bent-toed geckos (Cyrtodactylus) reveals a west to east pattern of diversification. Molecular Phylogenetics and Evolution, 65, 992–1003  https://doi.org/10.1016/j.ympev.2012.08.025.CrossRefGoogle Scholar
  94. Yan, J., Lin, Y., Guo, W., Li, P., & Zhou, K. (2016). A new species of Hemiphyllodactylus Bleeker, 1860 (Squamata: Gekkonidae) from Guizhou, China. Zootaxa, 4117, 543–554.CrossRefGoogle Scholar
  95. Zug, G. R. (2010). Speciation and dispersal in a low diversity taxon: the slender geckos Hemiphyllodactylus (Reptilia, Gekkonidae). Smithsonian Contributions to Zoology, 631, 1–70.CrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2019

Authors and Affiliations

  1. 1.National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
  2. 2.Centre for Ecological SciencesIndian Institute of ScienceBangaloreIndia
  3. 3.Foundation for Biodiversity ConservationNanded City, PuneIndia

Personalised recommendations