Advertisement

Organisms Diversity & Evolution

, Volume 18, Issue 4, pp 479–497 | Cite as

An integrative approach in the assessment of species delimitation and structure of the Merodon nanus species group (Diptera: Syrphidae)

  • Nataša Kočiš Tubić
  • Gunilla Ståhls
  • Jelena Ačanski
  • Mihajla Djan
  • Dragana Obreht Vidaković
  • Rüstem Hayat
  • Samad Khaghaninia
  • Ante Vujić
  • Snežana Radenković
Original Article
  • 67 Downloads

Abstract

The Merodon nanus group (Diptera, Syrphidae) is a small group of closely related species with high morphological similarity. Until now, based on morphological characters, this group consisted of five species: M. nanus Sack, 1931; M. telmateia Hurkmans, 1987; M. kopensis Vujić et Hayat, 2015; M. neonanus Vujić et Taylor, 2015; and M. rasicus Vujić et Radenković, 2015. Here, using an integrative approach based on molecular characters (sequences of the D2–3 region of the nuclear 28S rRNA gene and the mitochondrial COI gene) and data obtained from geometric morphometry of wing shape, we distinguish all five previously morphologically defined species of the group. Additionally, we identify one species as being new to science, M. vladimiri Vujić et Kočiš Tubić sp. n. We emphasize the separation of this newly described species according to the sequences obtained from the slowly evolving 28S rRNA gene, which demonstrated four to five mutation positions between this species and morphologically the most similar M. neonanus species. Also, our results show a clear division of M. telmateia into at least three population groups that we designate as the subspecies: M. telmateia mediterraneus Ačanski et Kočiš Tubić subsp. n. and M. telmateia samosensis Ačanski et Kočiš Tubić subsp. n. exhibiting western distributions (western Anatolia and the Greek island of Samos, respectively) and the nominative subspecies M. telmateia telmateia with an eastern Anatolian distribution.

Keywords

28S rRNA gene COI gene Morphometric analyses Wing Merodon vladimiri sp. n. 

Notes

Acknowledgments

We thank John O’Brien for the English language editing.

Funding information

This work was supported by the Ministry of Education, Science and Technological Development of Serbia (http://www.mpn.gov.rs/), Grant Number 173002 (Conservation strategies for the preservation of protected and strictly protected species in Serbia—hoverflies (Insecta: Diptera: Syrphidae) as model organisms).

Supplementary material

13127_2018_381_MOESM1_ESM.docx (29 kb)
Table S1 (DOCX 28.9 kb)
13127_2018_381_MOESM2_ESM.docx (16 kb)
Table S2 (DOCX 15.5 kb)
13127_2018_381_MOESM3_ESM.docx (16 kb)
Table S3 (DOCX 16.1 kb)
13127_2018_381_MOESM4_ESM.pdf (2.2 mb)
Fig. S1 (PDF 2204 kb)
13127_2018_381_MOESM5_ESM.pdf (2.6 mb)
Fig. S2 (PDF 2708 kb)

References

  1. Ačanski, J. (2017). Taxonomy and distribution of the genus Merodon Meigen (Diptera: Syrphidae) in Palearctic. PhD thesis, University of Novi Sad, 209pp.Google Scholar
  2. Ačanski, J., Vujić, A., Djan, M., Obreht Vidaković, D., Ståhls, G., & Radenković, S. (2016). Defining species boundaries in the Merodon avidus complex (Diptera, Syrphidae) using integrative taxonomy, with the description of a new species. European Journal of Taxonomy, 237, 1–25.  https://doi.org/10.5852/ejt.2016.237.CrossRefGoogle Scholar
  3. Arif, I. A., & Khan, H. A. (2009). Molecular markers for biodiversity analysis of wildlife animals: a brief review. Animal Biodiversity and Conservation, 32(1), 9–17.Google Scholar
  4. Arnqvist, G., & Mårtensson, T. (1998). Measurement error in geometric morphometrics: empirical strategies to assess and reduce its impact on measures of shape. Acta Zoologica Academiae Scientiarum Hungaricae, 44, 73–96.Google Scholar
  5. Baylac, M., & Frieß, M., (2005). Fourier descriptors, Procrustes superimposition, and data dimensionality: an example of cranial shape analysis in modern human populations. In D. E. Slice (Ed.), Modern morphometrics in physical anthropology (pp. 145–165).Google Scholar
  6. Belshaw, R., Lopez-Vaamonde, C., Degerli, N., & Quicke, D. L. J. (2001). Paraphyletic taxa and taxonomic chaining: evaluating the classification of braconine wasps (Hymenoptera: Braconidae) using 28S D2-3 rDNA sequences and morphological characters. Biological Journal of the Linnean Society, 73, 411–424.  https://doi.org/10.1006/bijl.2001.0539.CrossRefGoogle Scholar
  7. Betts, C. R., & Wootton, R. J. (1988). Wing shape and flight behaviour in butterflies (Lepidoptera: Papilionoidea and Hesperioidea): a preliminary analysis. Journal of Experimental Biology, 138, 271–288.Google Scholar
  8. Birdsall, K., Zimmerman, E., Teeter, K., & Gibson, G. (2000). Genetic variation for the positioning of wing veins in Drosophila melanogaster. Evolution and Development, 2, 16–24.PubMedGoogle Scholar
  9. Bitner-Mathé, B. C., & Klaczko, B. L. (1999). Size and shape heritability in natural populations of Drosophila mediopunctata: temporal and microgeographical variation. Genetica, 105, 35–42.PubMedGoogle Scholar
  10. Bluemel, J. K., Derlink, M., Pavlovčič, P., Russo, I.–. R. M., Andrew King, R., Corbett, E., Sherrard-Smith, E., Blejec, A., Wilson, M. R., Stewart, A. J. A., Symondson, W. O. C., & Virant-Doberlet, M. (2014). Integrating vibrational signals, mitochondrial DNA and morphology for species determination in the genus Aphrodes (Hemiptera: Cicadellidae). Systematic Entomology, 39, 304–324.Google Scholar
  11. Caterino, M. S., & Tishechkin, A. K. (2006). DNA identification and morphological description of the first confirmed larvae of Heteriinae (Coleoptera: Histeridae). Systematic Entomology, 31, 405–418.Google Scholar
  12. Chen, H., Rangasamy, M., Tan, S. Y., Wang, H., & Siegfried, B. D. (2010). Evaluation of five methods for total DNA extraction from western corn rootworm beetles. PLoS One, 5(8), e11963.  https://doi.org/10.1371/journal.pone.0011963.PubMedPubMedCentralGoogle Scholar
  13. Çiplak, B. (2003). Distribution of Tettigoniinae (Orthoptera, Tettigoniidae) bush-crickets in Turkey: the importance of the Anatolian Taurus Mountains in biodiversity and implications for conservation. Biodiversity and Conservation, 12, 47–64.Google Scholar
  14. Cowling, D. E., & Burnet, B. (1981). Courtship songs and genetic control of their acoustic characteristics in sibling species of the Drosophila melanogaster subgroup. Animal Behaviour, 29, 924–935.Google Scholar
  15. Dayrat, B. (2005). Towards integrative taxonomy. Biological Journal of the Linnean Society, 85(3), 407–415.Google Scholar
  16. Dell Statistica. (2015). Dell Statistica data analysis software system, version 13. Dell Inc.Google Scholar
  17. Demirsoy, A. (1996). Genel ve Türkiye Zoocoğrafyası. Ankara: Meteksan AŞ.Google Scholar
  18. DeVries, P. J., Penz, C. M., & Hill, R. I. (2010). Vertical distribution, flight behaviour and evolution of wing morphology in Morpho butterflies. Journal of Animal Ecology, 79(5), 1077–1085.PubMedGoogle Scholar
  19. Dworkin, I., & Gibson, G. (2006). Epidermal growth factor receptor and transforming growth factor-β signaling contributes to variation for wing shape in Drosophila melanogaster. Genetics, 173, 1417–1431.PubMedPubMedCentralGoogle Scholar
  20. Floyd, R., Abebe, E., Papert, A., & Blaxter, M. (2002). Molecular barcodes for soil nematode identification. Molecular Ecology, 11, 839–850.PubMedGoogle Scholar
  21. Folmer, D., Black, M. B., Hoch, W., Lutz, R. A., & Vrijehock, R. C. (1994). DNA primers for amplification of mitochondrial cytochrome oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.PubMedGoogle Scholar
  22. Francuski, L., Ludoški, J., Vujić, A., & Milankov, V. (2009). Wing geometric morphometric inferences on species delimitation and intraspecific divergent units in the Merodon ruficornis group (Diptera, Syrphidae) from the Balkan Peninsula. Zoological Science, 26, 301–308.PubMedGoogle Scholar
  23. Francuski, L., Ludoški, J., Vujić, A., & Milankov, V. (2011). Phenotypic evidence for hidden biodiversity in the Merodon aureus group (Diptera, Syrphidae) on the Balkan Peninsula: conservation implication. Journal of Insect Conservation, 15, 379–388.Google Scholar
  24. Goloboff, P. (1999). NONA computer program. Tucuman: Published by the author.Google Scholar
  25. Goulding, T. C., & Dayrat, B. (2016). Integrative taxonomy: ten years of practice and looking into the future. Сборник трудов Зоологического музея МГУ им. М.В. Ломоносова. Archives of Zoological Museum of Lomonosov Moscow State University, 54, 116–133.Google Scholar
  26. Grabow, K., & Rüppell, G. (1995). Wing loading in relation to size and flight characteristics of European Odonata. Odonatologica, 24(2), 175–186.Google Scholar
  27. Gül, S. (2013). Ecological divergence between two evolutionary lineages of Hyla savignyi (Audouin, 1827) in Turkey: effects of the Anatolian diagonal. Animal Biology, 63(3), 285–295.Google Scholar
  28. Habel, J. C., Meyer, M., El Mousadik, A., & Schmitt, T. (2008). Africa goes Europe: the complete phylogeography of the marbled white butterfly species complex Melanargia galathea/M. lachesis (Lepidoptera: Satyridae). Organisms Diversity and Evolution, 8(2), 121–129.Google Scholar
  29. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  30. Hesselbarth, G., Van Oorschot, H., & Wagener, S. (1995). Die Tagfalter der Türkei. Band 2. Nymphalidae. Bocholt: Selbsterverlag Sigbert Wagener.Google Scholar
  31. Hewitt, G. M. (2001). Speciation, hybrid zones and phylogeography or seeing genes in space and time. Molecular Ecology, 10(3), 537–549.PubMedGoogle Scholar
  32. Hoikkala, A., Aspi, J., & Suvanto, L. (1998). Male courtship song frequency as an indicator of male genetic quality in an insect species, Drosophila montana. Proceedings of the Royal Society of London B: Biological Sciences, 265(1395), 503–508.Google Scholar
  33. Hurkmans, W. (1987). Merodon telmateia, a new hoverfly from Turkey (Diptera: Syrphidae). Entomologische Berichten (Amsterdam), 45, 69–70.Google Scholar
  34. Hwang, U. W., & Kim, W. (1999). General properties and phylogenetic utilities of nuclear ribosomal DNA and mitochondrial DNA commonly used in molecular systematic. Korean Journal of Parasitology, 37(4), 215–228.PubMedGoogle Scholar
  35. Khaghaninia, S., Jafarlu, M., Khiaban, N. G., & Askari, O. (2010). Introduction to hover flies (Diptera: Syrphidae) of sunflower and pumpkin fields in West Azerbaijan Province-Iran. Munis Entomology & Zoology Journal, 5, 270–277.Google Scholar
  36. Klingenberg, C. P. (2011). MORPHOJ: an integrated software package for geometric Morphometrics. Ver.2. 0. [Computer software and manual]. Molecular Ecology Resources, 11, 353–357.PubMedGoogle Scholar
  37. Kölliker-Ott, U. M., Blows, M. W., & Hoffmann, A. A. (2003). Are wing size, wing shape and asymmetry related to field fitness of Trichogramma egg parasitoids? Oikos, 100(3), 563–573.Google Scholar
  38. Kosswig, C. (1995). Zoogeography of the Near East. Systematic Biology, 4(2), 49–73.  https://doi.org/10.2307/sysbio/4.2.49.CrossRefGoogle Scholar
  39. Kustov, S. Y. (2003). Zoogeographical analysis of the hoverfly fauna (Diptera, Syrphidae) of the northwestern Caucasus. Entomological Review, 86, 188–196.Google Scholar
  40. Lumaret, J.-P., & Lobo, J. M. (1996). Geographic distribution of endemic dung beetles (Coleoptera, Scarabaeoidea) in the Western Palaearctic region. Biodiversity Letters, 3, 192–199.Google Scholar
  41. Mantel, N. A. (1976). The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209–220.Google Scholar
  42. Marcos-García, M. Á., Vujić, A., & Mengual, X. (2007). Revision of Iberian species of the genus Merodon (Diptera: Syrphidae). European Journal of Entomology, 104, 531–572.Google Scholar
  43. Marcos-García, M. Á., Vujić, A., Ricarte, A., & Ståhls, G. (2011). Towards an integrated taxonomy of the Merodon equestris species complex (Diptera: Syrphidae) including description of a new species, with additional data on Iberian Merodon. Canadian Entomology, 143, 332–348.Google Scholar
  44. Markmann, M., & Tautz, D. (2005). Reverse taxonomy: an approach towards determining the diversity of meiobenthic organisms based on ribosomal signature sequences. Philosophical Transactions of the Royal Society B, 360, 1917–1924.Google Scholar
  45. Masetti, A., Luchetti, A., Sommaggio, D., Burgio, G., & Mantovani, B. (2006). Phylogeny of Chrysotoxum species (Diptera: Syrphidae) inferred from morphological and molecular characters. European Journal of Entomology, 103(2), 459–467.  https://doi.org/10.14411/eje.2006.059.CrossRefGoogle Scholar
  46. McClain, D. K., Li, J., & Oliver Jr., J. H. (2001). Interspecific and geographical variation in the sequence of rDNA expansion segment D3 of Ixodes ticks (Acaria: Ixodidae). Heredity, 86, 234–242.Google Scholar
  47. Menezes, B. F., Vigoder, F. M., Peixoto, A. A., Varaldi, J., & Bitner-Mathé, B. C. (2013). The influence of male wing shape on mating success in Drosophila melanogaster. Animal Behaviour, 85(6), 1217–1223.Google Scholar
  48. Mengual, X., Ståhls, G., Vujić, A., & Marcos-García, M. Á. (2006). Integrative taxonomy of Iberian Merodon species (Diptera, Syrphidae). Zootaxa, 1377, 1–26.Google Scholar
  49. Mengual, X., Ståhls, G., & Rojo, S. (2008). First phylogeny of predatory hoverflies (Diptera, Syrphidae, Syphinae) using mitochondrial COI and nuclear 28S rRNA genes: conflict and congruence with the current tribal classification. Cladistics, 24, 543–562.Google Scholar
  50. Mengual, X., Ståhls, G., & Rojo, S. (2012). Is the mega-diverse genus Ocyptamus (Diptera, Syrphidae) monophyletic? Evidence from molecular characters including the secondary structure of 28S rRNA. Molecular Phylogenetics and Evolution, 62, 191–205.PubMedGoogle Scholar
  51. Mengual, X., Ståhls, G., & Rojo, S. (2015). Phylogenetic relationships and taxonomic ranking of pipizine flower flies (Diptera: Syrphidae) with implications for the evolution of aphidophagy. Cladistics, 31, 491–508.Google Scholar
  52. Mezey, J. G., & Houle, D. (2005). The dimensionality of genetic variation for wing shape in Drosophila melanogaster. Evolution, 59, 1027–1038.PubMedGoogle Scholar
  53. Milankov, V., Ståhls, G., & Vujić, A. (2008a). Molecular diversity of populations of the Merodon ruficornis group (Diptera, Syrphidae) on the Balkan Peninsula. Journal of Zoological Systematics and Evolutionary Research, 46(2), 143–152.Google Scholar
  54. Milankov, V., Ståhls, G., Stamenković, J., & Vujić, A. (2008b). Genetic diversity of populations of Merodon aureus and M. cinereus species complexes (Diptera, Syrphidae): integrative taxonomy and implications for conservation priorities on the Balkan Peninsula. Conservation Genetics, 9, 1125–1137.Google Scholar
  55. Milankov, V., Ludoški, J., Ståhls, G., Stamenković, J., & Vujić, A. (2009). High molecular and phenotypic diversity in the Merodon avidus complex (Diptera, Syrphidae): cryptic speciation in a diverse insect taxon. Zoological Journal of the Linnean Society London, 155, 819–833.Google Scholar
  56. Milankov, V., Ludoški, J., Francuski, L., Ståhls, G., & Vujić, A. (2013). Genetic and phenotypic diversity patterns in Merodon albifrons Meigen, 1822 (Diptera: Syrphidae): evidence of intraspecific spatial and temporal structuring. Biological Journal of the Linnean Society, 110, 257–280.Google Scholar
  57. Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE), IEEE, pp 1–8.Google Scholar
  58. Miraldo, A., Krell, F.–. T., Smalén, M., Angus, R. B., & Roslin, T. (2014). Making the cryptic visible—resolving the species complex of Aphodius fimetarius (Linnaeus) and Aphodius pedellus (de Geer) (Coleoptera: Scarabaeidae) by three complementary methods. Systematic Entomology, 39, 531–547.Google Scholar
  59. Monaghan, M. T., Balke, M., Gregory, T. R., & Vogler, A. P. (2005). DNA-based species delineation in tropical beetles using mitochondrial and nuclear markers. Philosophical Transactions of the Royal Society B, 360, 1925–1933.Google Scholar
  60. Monteiro, F. A., Wesson, D. A., Dotson, E. M., Schofield, C. J., & Beard, C. B. (2000). Phylogeny and molecular taxonomy of the Rhodniini derived from mitochondrial and nuclear DNA sequences. American Journal of Tropical Medicine and Hygiene, 62, 460–465.PubMedGoogle Scholar
  61. Moraes, E. M., Spressola, V. L., Prado, P. R. R., Costa, L. F., & Sene, F. M. (2004). Divergence in wing morphology among sibling species of Drosophila buzzatii cluster. Journal of Zoological Systematics and Evolutionary Research, 42, 154–158.Google Scholar
  62. Mutun, S. (2016). Review of oak gall wasps phylogeographic patterns in Turkey suggests a main role of the Anatolian diagonal. Turkish Journal of Forestry, 17, 1–6.Google Scholar
  63. Nedeljković, Z., Ačanski, J., Vujić, A., Obreht, D., Djan, M., Ståhls, G., & Radenković, S. (2013). Taxonomy of Chrysotoxum festivum Linnaeus, 1758 (Diptera: Syrphidae)—an integrative approach. Zoological Journal of the Linnean Society, 169, 84–102.Google Scholar
  64. Nedeljković, Z., Ačanski, J., Djan, M., Obreht Vidaković, D., Ricarte, A., & Vujić, A. (2015). An integrated approach to delimiting species borders in the genus Chrysotoxum Meigen, 1803 (Diptera: Syrphidae), with description of two new species. Contributions to Zoology, 84(4), 285–304.Google Scholar
  65. Ninet, B., Jan, I., Bontems, O., Léchenne, B., Jousson, O., Panizzon, R., Lew, D., & Monod, M. (2003). Identification of dermatophyte species by 28S ribosomal DNA sequencing with a commercial kit. Journal of Clinical Microbiology, 41, 826–830.PubMedPubMedCentralGoogle Scholar
  66. Nixon, K. C. (2002). Winclada version 1.00.08, published by author, Ithaca, New York (http://www.cladistics.com).
  67. Oosterbroek, P., & Arntzen, J. W. (1992). Area-cladograms of circum-Mediterranean taxa in relation to Mediterranean palaeogeography. Journal of Biogeography, 19, 3–20.Google Scholar
  68. Outomuro, D., Adams, D. C., & Johansson, F. (2013). The evolution of wing shape in ornamented-winged damselflies (Calopterygidae, Odonata). Evolutionary Biology, 40, 300–309.Google Scholar
  69. Padial, J. M., Miralles, A., De la Riva, I., & Vences, M. (2010). The integrative future of taxonomy. Frontiers in Zoology, 7, 1–14.Google Scholar
  70. Parks, D. H., Mankowski, T., Zangooei, S., Porter, M. S., Armanini, D. G., Baird, D. J., Langille, M. G. I., & Beiko, R. G. (2013). GenGIS 2: geospatial analysis of traditional and genetic biodiversity, with new gradient algorithms and an extensible plugin framework. PLoS One, 8(7), e69885.  https://doi.org/10.1371/journal.pone.0069885.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Patwardhan, A., Ray, S., & Roy, A. (2014). Molecular markers in phylogenetic studies—a review. Journal of Phylogenetics & Evolutionary Biology, 2, 131.  https://doi.org/10.4172/2329-9002.1000131.CrossRefGoogle Scholar
  72. Pérez-Bañón, C., Rojo, S., Ståhls, G., & Marcos-García, M. A. (2003). Taxonomy of European Eristalinus (Diptera: Syrphidae) based on larval morphology and molecular data. European Journal of Entomology, 100, 417–428.  https://doi.org/10.14411/eje.2003.064.CrossRefGoogle Scholar
  73. Popović, D., Ačanski, J., Djan, M., Obreht, D., Vujić, A., & Radenković, S. (2015). Sibling species delimitation and nomenclature of the Merodon avidus complex (Diptera: Syrphidae). European Journal of Entomology, 112(4), 790–809.  https://doi.org/10.14411/eje.2015.100.CrossRefGoogle Scholar
  74. Poulakakis, N., Kapli, P., Lymberakis, P., Trichas, A., Vardinoyiannis, K., Sfenthourakis, S., & Mylonas, M. (2015). A review of phylogeographic analyses of animal taxa from the Aegean and surrounding regions. Journal of Zoological Systematics and Evolutionary Research, 53(1), 18–32.  https://doi.org/10.1111/jzs.12071.CrossRefGoogle Scholar
  75. Quantum GIS Development Team. (2012). Quantum GIS Geographic Information System. Version 2.12.3 Lyon [Internet]. Open Source Geospatial Foundation Project. Available: http://qgis.osgeo.org.
  76. Radenković, S., Vujić, A., Ståhls, G., Perez–Banon, C., Petanidou, T., & Simić, S. (2011). Three new cryptic species of the genus Merodon Meigen (Diptera: Syrphidae) from the island of Lesvos (Greece). Zootaxa, 2735, 35–56.Google Scholar
  77. Radenković, S., Šašić Zorić, L., Djan, M., Obreht Vidaković, D., Ačanski, J., Ståhls, G., Veličković, N., Markov, Z., Petanidou, T., Kočiš Tubić, N., & Vujić, A. (2018). Cryptic speciation in the Merodon luteomaculatus complex (Diptera: Syrphidae) from the eastern Mediterranean. Journal of Zoological Systematics and Evolutionary Research, 56, 170–191.  https://doi.org/10.1111/jzs.12193.CrossRefGoogle Scholar
  78. Raupach, M. J., Astrin, J. J., Hannig, K., Peters, M. K., Stoeckle, M. Y., & Wägele, J.-W. (2010). Molecular species identification of central European ground beetles (Coleoptera: Carabidae) using nuclear rDNA expansion segments and DNA barcodes. Frontiers in Zoology, 7, 26 http://www.frontiersinzoology.com/content/7/1/26.PubMedPubMedCentralGoogle Scholar
  79. Reemer, M., & Smit, J. (2007). Some hoverfly records from Turkey (Diptera, Syrphidae). Volucella, 8, 135–146.Google Scholar
  80. Ricarte, A., Nedeljković, Z., Rotheray, G. E., Yszkowski, R. M., Hancock, E. G., Watt, K., Hewitt, S. M., Horsefield, D., & Wilkinson, G. (2012). Syrphidae (Diptera) from the Greek island of Lesvos, with description of two new species. Zootaxa, 3175, 1–23.Google Scholar
  81. Riedel, A., Sagata, K., Suhardjono, Y. R., Tanzler, R., & Balke, M. (2013). Integrative taxonomy on the fast track—towards more sustainability in biodiversity research. Frontiers in Zoology, 10, 15.PubMedPubMedCentralGoogle Scholar
  82. Ritchie, M. G., & Gleason, J. M. (1995). Rapid evolution of courtship song pattern in Drosophila willistoni sibling species. Journal of Evolutionary Biology, 8(4), 463–479.Google Scholar
  83. Rodriguez, F., Oliver, J. L., Marin, A., & Medina, J. R. (1990). The general stochastic model of nucleotide substitution. Journal of Theoretical Biology, 142, 485–501.  https://doi.org/10.1016/S0022-5193(05)80104-3.CrossRefPubMedGoogle Scholar
  84. Rohlf, F. J. (2006). TpsDig—digitize landmarks and outlines. Ver. 2.05. [Computer software and manual] Department of Ecology and Evolution, State University of New York at Stony Brook.Google Scholar
  85. Rohlf, F. J., & Slice, D. E. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39, 40–59.Google Scholar
  86. Rosenberg, M. S., & Anderson, C. D. (2011). PASSaGE: pattern analysis, spatial statistics and geographic exegesis. Version 2. Methods in Ecology and Evolution, 2(3), 229–232.Google Scholar
  87. Sacchi, R., & Hardersen, S. (2013). Wing length allometry in Odonata: differences between families in relation to migratory behaviour. Zoomorphology, 132(1), 23–32.Google Scholar
  88. Saribiyik, S. (2003). Milesiinae fauna of Kahramanmaraş’s Andirin town (Diptera: Syrphidae). Kastamonu Eğitim Dergisi, 11, 159–164.Google Scholar
  89. Šašić, L., Ačanski, J., Vujić, A., Ståhls, G., Radenković, S., Milić, D., Vidaković, D. O., & Djan, M. (2016). Molecular and morphological inference of three cryptic species within the Merodon aureus species group (Diptera: Syrphidae). PLoS One, 11(8), e0160001.  https://doi.org/10.1371/journal.pone.0160001.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Schlick-Steiner, B. C., Steiner, F. M., Seifert, B., Stauffer, C., Christian, E., & Crozier, R. H. (2010). Integrative taxonomy: a multisource approach to exploring biodiversity. Annual Review of Entomology, 55, 421–438.PubMedGoogle Scholar
  91. Sesli, E., & Denchev, C. M. (2008). Checklists of the myxomycetes, larger ascomycetes, and larger basidiomycetes in Turkey. Mycotaxon, 106, 65.Google Scholar
  92. Sfenthourakis, S. (1996). A biogeographical analysis of terrestrial isopods (Isopoda, Oniscidea) from the central Aegean islands (Greece). Journal of Biogeography, 23, 687–698.  https://doi.org/10.1111/j.13652699.1996.tb00029.x.
  93. Shirouzu, T., Hirose, D., & Tokumasu, S. (2007). Sequence analyses of the 28S rRNA gene D1/D2 region suggest Dacrymyces (Heterobasidiomycetes, Dacrymycetales) is polyphyletic. Mycoscience, 48, 388–394.Google Scholar
  94. Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994). Evolution, weighting and phylogenetic utility of mitochondrial gene-sequences and a compilation of conserved polymerase chain-reaction primers. Annals of the Entomological Society of America, 87, 651–701.Google Scholar
  95. Sindaco, R., Venchi, A., Carpaneto, G. M., & Bologna, M. A. (2000). The reptiles of Anatolia: a checklist and zoogeographical analysis. Biogeographia, 21-2000, 441–554.Google Scholar
  96. Sonnenberg, R., Nolte, A. W., & Tautz, D. (2007). An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Frontiers in Zoology, 4, 6.PubMedPubMedCentralGoogle Scholar
  97. Ståhls, G., Hippa, H., Rotheray, G., Muona, J., & Gilbert, F. (2003). Phylogeny of Syrphidae (Diptera) inferred from combined analysis of molecular and morphological characters. Systematic Entomology, 28, 433–450.Google Scholar
  98. Ståhls, G., Vujić, A., Stuke, J.–. H., Doczkal, D., & Muona, J. (2004). Phylogeny of the genus Cheilosia and the tribe Rhingiini (Diptera, Syrphidae) based on molecular and morphological characters. Cladistics, 4, 1–17.Google Scholar
  99. Ståhls, G., Vujić, A., & Milankov, V. (2008). Cheilosia vernalis (Diptera, Syrphidae) complex: molecular and morphological variability. Annales Zoologici Fennici, 45, 149–159.Google Scholar
  100. Ståhls, G., Vujić, A., Pérez-Bañón, C., Radenković, S., Rojo, S., & Petanidou, T. (2009). COI barcodes for identification of Merodon hoverflies (Diptera, Syrphidae) of Lesvos Island, Greece. Molecular Ecology Resources, 9, 1431–1438.PubMedGoogle Scholar
  101. Ståhls, G., Vujić, A., Petanidou, T., Cardoso, P., Radenković, S., Ačanski, J., Pérez-Bañón, C., & Rojo, S. (2016). Phylogeographic patterns of Merodon hoverflies in the eastern Mediterranean region: revealing connections and barriers. Ecology and Evolution, 6(7), 2226–2245.  https://doi.org/10.1002/ece3.2021.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313.  https://doi.org/10.1093/bioinformatics/btu033.CrossRefPubMedPubMedCentralGoogle Scholar
  103. Tauber, E., & Eberl, D. F. (2003). Acoustic communication in Drosophila. Behavioural Processes, 64(2), 197–210.Google Scholar
  104. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weigh matrix choice. Nucleic Acids Research, 22, 4673–4680.PubMedPubMedCentralGoogle Scholar
  105. Vitecek, S., Kučinić, M., Previšić, A., Živić, I., Stojanović, K., Keresztes, L., Bálint, M., Hoppeler, F., Waringer, J., Graf, W., & Pauls, S. U. (2017). Integrative taxonomy by molecular species delimitation: multi-locus data corroborate a new species of Balkan Drusinae microendemics. BMC Evolutionary Biology, 17, 129.  https://doi.org/10.1186/s12862-017-0972-5.CrossRefPubMedPubMedCentralGoogle Scholar
  106. Vujić, A., Pérez-Bañón, C., Radenković, S., Ståhls, G., Rojo, S., Petanidou, T., & Šimić, S. (2007). Two new species of the genus Merodon Meigen 1803 (Diptera: Syrphidae) from the island of Lesvos (Greece), in the eastern Mediterranean. Annales de la Société Entomologique de France (N.S.), 43(3), 319–326.Google Scholar
  107. Vujić, A., Marcos-García, M. Á., Saribiyik, S., & Ricarte, A. (2011). New data on the Merodon Meigen 1803 fauna (Diptera: Syrphidae) of Turkey including description of a new species and changes in the nomenclatural status of several taxa. Annales de la Société Entomologique de France (N.S.), 47, 78–88.Google Scholar
  108. Vujić, A., Radenković, S., Ståhls, G., Ačanski, J., Stefanović, A., Veselić, S., Andrić, A., & Hayat, R. (2012). Systematics and taxonomy of the ruficornis group of genus Merodon Meigen (Diptera: Syrphidae). Systematic Entomology, 37, 578–602.Google Scholar
  109. Vujić, A., Radenković, S., Likov, L., Trifunov, S., & Nikolić, T. (2013a). Three new species of the Merodon nigritarsis group (Diptera: Syrphidae) from the Middle East. Zootaxa, 3640, 442–464.PubMedGoogle Scholar
  110. Vujić, A., Ståhls, G., Ačanski, J., Bartsch, H., Bygebjerg, R., & Stefanović, A. (2013b). Systematics of Pipizini and taxonomy of European Pipiza Fallen: molecular and morphological evidence (Diptera, Syrphidae). Zoologica Scripta, 42, 288–305.Google Scholar
  111. Vujić, A., Radenković, S., Ačanski, J., Grković, A., Taylor, M., Gökhan Senol, S., & Hayat, R. (2015). Revision of the species of the Merodon nanus group (Diptera: Syrphidae) including three new species. Zootaxa, 4006(3), 439–462.  https://doi.org/10.11646/zootaxa.4006.3.2.CrossRefPubMedGoogle Scholar
  112. Vujić, A., Petanidou, T., Tscheulin, T., Cardoso, P., Radenković, S., Ståhls, G., Baturan, Z., Mijatović, G., Rojo, S., Perez-Banon, C., Devalez, J., Andrić, A., Jovičić, S., Krašić, D., Markov, Z., Radišić, D., & Tataris, G. (2016). Biogeographical patterns of the genus Merodon Meigen, 1803 (Diptera: Syrphidae) in islands of the eastern Mediterranean and adjacent mainland. Insect Conservation and Diversity, 9(3), 181–191.  https://doi.org/10.1111/icad.12156.CrossRefGoogle Scholar
  113. Wang, Y., Nansen, C., & Zhang, Y. (2016). Integrative insect taxonomy based on morphology, mitochondrial DNA, and hyperspectral reflectance profiling. Zoological Journal of the Linnean Society, 177, 378–394.Google Scholar
  114. Will, K. W., Mishler, B. D., & Wheeler, Q. D. (2005). The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology, 54, 844–851.PubMedGoogle Scholar
  115. Yeaman, S., Chen, Y., & Whitlock, M. C. (2010). No effect of environmental heterogeneity on the maintenance of genetic variation in wing shape in Drosophila melanogaster. Evolution, 64, 3398–3408.PubMedGoogle Scholar
  116. Yildirim, E., Ljubomirov, T., & Lelej, A. S. (2014). Overview of the distribution and biogeography of Crabronidae in Turkey (Hymenoptera: Aculeata). Journal of Insect Biodiversity, 2(3), 1–27.Google Scholar
  117. Zelditch, M. L., Swiderski, D. L., Sheets, H. D., & Fink, W. L. (2004). Geometric morphometrics for biologists: a primer. London: Elsevier Academic.Google Scholar
  118. Zohary, M. (1973). Geobotanical foundations of the Middle East (Vol. 2). Stuttgart: Gustav FischerVerlag.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2018

Authors and Affiliations

  • Nataša Kočiš Tubić
    • 1
  • Gunilla Ståhls
    • 2
  • Jelena Ačanski
    • 3
  • Mihajla Djan
    • 1
  • Dragana Obreht Vidaković
    • 4
  • Rüstem Hayat
    • 5
  • Samad Khaghaninia
    • 6
  • Ante Vujić
    • 1
  • Snežana Radenković
    • 1
  1. 1.Department of Biology and Ecology, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
  2. 2.Zoology UnitFinnish Museum of Natural History, University of HelsinkiHelsinkiFinland
  3. 3.BioSense Institute - Research Institute for Information Technologies in BiosystemsUniversity of Novi SadNovi SadSerbia
  4. 4.Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverCanada
  5. 5.IspartaTurkey
  6. 6.Department of Plant ProtectionUniversity of TabrizTabrizIran

Personalised recommendations