Advertisement

Organisms Diversity & Evolution

, Volume 18, Issue 3, pp 279–290 | Cite as

Increased taxon sampling provides new insights into the phylogeny and evolution of the subclass Calcaronea (Porifera, Calcarea)

  • Adriana Alvizu
  • Mari Heggernes Eilertsen
  • Joana R. Xavier
  • Hans Tore Rapp
Original Article
  • 221 Downloads

Abstract

Calcaronean sponges are acknowledged to be taxonomically difficult, and generally, molecular data does not support the current morphology-based classification. In addition, molecular markers that have been successfully employed in other sponge taxa (e.g., COI mtDNA) have proven challenging to amplify due to the characteristics of calcarean mitochondrial genomes. A short fragment of the 28S rRNA gene (C-region) was recently proposed as the most phylogenetically informative marker to be used as a DNA barcode for calcareous sponges. In this study, the C-region and a fragment of the 18S rRNA gene were sequenced for a wide range of calcareous taxa, mainly from the subclass Calcaronea. The resulting dataset includes the most comprehensive taxon sampling of Calcaronea to date, and the inclusion of multiple specimens per species allowed us to evaluate the performance of both markers, as barcoding markers. 18S proved to be highly conserved within Calcaronea and does not have sufficient signal to resolve phylogenetic relationships within the subclass. Although the C-region does not exhibit a “proper” barcoding gap, it provides good phylogenetic resolution for calcaronean sponges. The resulting phylogeny supports previous findings that the current classification of the subclass Calcaronea is highly artificial, and with high levels of homoplasy. Furthermore, the close relationship between the order Baerida and the genus Achramorpha suggest that the order Baerida should be abandoned. Although the C-region currently represents the best available marker for phylogenetic and barcoding studies in Calcaronea, it is necessary to develop additional molecular markers to improve the classification within this subclass.

Keywords

Calcareous sponges Barcoding gap Phylogeny of Calcaronea C-region of LSU 

Notes

Acknowledgements

A number of people and institutions have provided material from all around the world for this study: We are greatly indebted to Claire Goodwin, Alexander Ereskowsky, Bente Stransky, and Stefano Schiaparelli for sending us samples from St Helena, White Sea, Greenland and the Antarctic. Torkild Bakken (the NTNU University Museum), Ole Secher Tendal (Natural History Museum of Denmark, University of Copenhagen), Jon Anders Kongsrud (University Museum of Bergen and the MAREANO program), and Kenneth Lundin (Natural History Museum, Gothenburg) are thanked for providing material from their collections. Saskia Brix (Senckenberg Naturmuseum Frankfurt) is thanked for inviting us to take part in the IceAge project and funding from the Norwegian Research School in Biosystematics (ForBio) enabled us to collect on the Greenlandic west-coast. Special thanks to David Rees and Pedro Ribeiro (both University of Bergen) for helping us in the molecular lab and with the data analyses using the software PHASE-3. We further thank two anonymous reviewers for their constructive comments to a previous version of this manuscript.

Funding information

This study was supported by the Norwegian Biodiversity Information Centre (grant to HTR, project number 70184219), the Norwegian Academy of Science and Letters (grant to HTR), and the Research Council of Norway (through contract number 179560).

Supplementary material

13127_2018_368_MOESM1_ESM.xlsx (68 kb)
Online Resource 1 List of specimens of calcareous sponges used in this study, with the respective voucher numbers, locality information, GenBank accession numbers and morphological remarks for “uncertain” and possible new species (XLSX 67.9 kb)
13127_2018_368_MOESM2_ESM.mase (199 kb)
Online Resource 2 Alignment of 106 sequences of 18S rRNA rDNA (MASE file) according to the secondary structure information for Calcaronea available at http://www.palaeontologie.geo.lmu.de/molpal/RRNA/index.htm (MASE 198 kb)
13127_2018_368_MOESM3_ESM.mase (77 kb)
Online Resource 3 Alignment of 152 sequences of the C-region of 28S rDNA (MASE file) according to the LSU rRNA secondary structure model proposed by Voigt and Wörheide (2016) (MASE 77.3 kb)
13127_2018_368_MOESM4_ESM.xlsx (184 kb)
Online Resource 4 Matrix of pairwise uncorrected p-distances calculated in MEGA for 18S rRNA (XLSX 184 kb)
13127_2018_368_MOESM5_ESM.xlsx (9.1 mb)
Online Resource 5 Matrix of pairwise uncorrected p-distances calculated in MEGA for the C-region of 28S rDNA (XLSX 9338 kb)

References

  1. Allen, J. E., & Whelan, S. (2014). Assessing the state of substitution models describing noncoding RNA evolution. Genome Biology and Evolution, 6(1), 65–75.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alvizu, A., Díaz, M. C., Bastidas, C., Rützler, K., Thacker, R. W., & Márquez, L. M. (2013). A skeleton-less sponge of Caribbean mangroves: invasive or undescribed? Invertebrate Biology, 132(2), 1–14.CrossRefGoogle Scholar
  3. Azevedo, F., Cóndor-Luján, B., Willenz, P., Hajdu, E., Hooker, Y., & Klautau, M. (2015). Integrative taxonomy of calcareous sponges (subclass Calcinea) from the Peruvian coast: morphology, molecules, and biogeography. Zoological Journal of the Linnean Society, 173(4), 787–817.  https://doi.org/10.1111/zoj.12213.CrossRefGoogle Scholar
  4. Azevedo, F., Padua, A., Moraes, F., Rossi, A. L., Muricy, G., & Klautau, M. (2017). Taxonomy and phylogeny of calcareous sponges (Porifera: Calcarea: Calcinea) from Brazilian mid-shelf and oceanic islands. Zootaxa, 4311(3), 301–304.CrossRefGoogle Scholar
  5. Baer, C. F., Miyamoto, M. M., & Denver, D. R. (2007). Mutation rate variation in multicellular eukaryotes: causes and consequences. Nature Reviews Genetics, 8(8), 619–631.CrossRefPubMedGoogle Scholar
  6. Barrett, R. D. H., & Hebert, P. D. N. (2005). Identifying spiders through DNA barcodes. Canadian Journal of Zoology, 83(3), 481–491.  https://doi.org/10.1139/z05-024.CrossRefGoogle Scholar
  7. Burton, M. (1963). A revision of the classification of the calcareous sponges: with a catalogue of the specimens in the British museum (natural history). London: Order of the trustees of the British Museum (Natural History).Google Scholar
  8. Cárdenas, P., Xavier, J. R., Reveillaud, J., Schander, C., & Rapp, H. T. (2011). Molecular phylogeny of the Astrophorida (Porifera, Demospongiae) reveals an unexpected high level of spicule homoplasy. PLoS One, 6, e18318.  https://doi.org/10.1371/journal.pone.0018318.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cavalcanti, F. F., Skinner, L. F., & Klautau, M. (2013). Population dynamics of cryptogenic calcarean sponges (Porifera, Calcarea) in southeastern Brazil. Marine Ecology, 34(3), 280–288.  https://doi.org/10.1111/maec.12013.CrossRefGoogle Scholar
  10. Chombard, C., Boury-Esnault, N., & Tillier, S. (1998). Reassessment of homology of morphological characters in Tetractinellid sponges based on molecular data. Systematic Biology, 47(3), 351–366.CrossRefPubMedGoogle Scholar
  11. Dohrmann, M., Haen, K. M., Lavrov, D. V., & Wörheide, G. (2012). Molecular phylogeny of glass sponges (Porifera, Hexactinellida): increased taxon sampling and inclusion of the mitochondrial protein-coding gene, cytochrome oxidase subunit I. Hydrobiologia, 687(1), 11–20.  https://doi.org/10.1007/s10750-011-0727-z.CrossRefGoogle Scholar
  12. Dohrmann, M., Janussen, D., Reitner, J., Collins, A. G., & Wörheide, G. (2008). Phylogeny and evolution of glass sponges (Porifera, Hexactinellida). Systematic Biology, 57(3), 388–405.  https://doi.org/10.1080/10635150802161088.CrossRefPubMedGoogle Scholar
  13. Dohrmann, M., Kelley, C., Kelly, M., Pisera, A., Hooper, J. N. A., & Reiswig, H. M. (2017). An integrative systematic framework helps to reconstruct skeletal evolution of glass sponges (Porifera, Hexactinellida). Frontiers in Zoology, 14(18), 18.  https://doi.org/10.1186/s12983-017-0191-3.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dohrmann, M., Voigt, O., Erpenbeck, D., & Wörheide, G. (2006). Non-monophyly of most supraspecific taxa of calcareous sponges (Porifera, Calcarea) revealed by increased taxon sampling and partitioned Bayesian analysis of ribosomal DNA. Molecular Phylogenetics and Evolution, 40(3), 830–843.CrossRefPubMedGoogle Scholar
  15. Duran, S., Pascual, M., & Turon, X. (2004). Low levels of genetic variation in mtDNA sequences over the western Mediterranean and Atlantic range of the sponge Crambe crambe (Poecilosclerida). Marine Biology, 144, 31–35.CrossRefGoogle Scholar
  16. Erpenbeck, D., & Wörheide, G. (2007). On the molecular phylogeny of sponges (Porifera). Zootaxa, 1668, 107–126.Google Scholar
  17. Gouy, M., Guindon, S., & Gascuel, O. (2010). SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27(2), 221–224.  https://doi.org/10.1093/molbev/msp259.CrossRefPubMedGoogle Scholar
  18. Haeckel, E. (1872). Die Kalkschwämme. Eine Monographie in zwei Bänden Text und einem Atlas mit 60 Tafeln Abbildungen (Vol. Vol. I-III). Berlin.Google Scholar
  19. Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S., & Francis, C. M. (2004). Identification of birds through DNA barcodes. PLoS Biology, 2(10), e312.  https://doi.org/10.1371/journal.pbio.0020312.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hooper, J. N. A., & van Soest, R. W. M. (Eds.). (2002). Systema Porifera: a guide to the classification of sponges (Vol. 2). New York: Kluwer Academic/Plenum Publishers.Google Scholar
  21. Imešek, M., Pleše, B., Pfannkuchen, M., Godrijan, J., Pfannkuchen, D. M., Klautau, M., & Ćetković, H. (2014). Integrative taxonomy of four Clathrina species of the Adriatic Sea, with the first formal description of Clathrina rubra Sarà, 1958. Organisms, Diversity and Evolution, 14(1), 21–29.CrossRefGoogle Scholar
  22. Jenner, R. A. (2004). When molecules and morphology clash: reconciling conflicting phylogenies of the Metazoa by considering secondary character loss. Evolution & Development, 6(5), 372–378.  https://doi.org/10.1111/j.1525-142X.2004.04045.x.CrossRefGoogle Scholar
  23. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647–1649.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Klautau, M., Azevedo, F., Cóndor-Luján, B., Rapp, H. T., Collins, A., & de Morales Russo, C. A. (2013). A molecular phylogeny for the order Clathrinida rekindles and refines Haeckel's taxonomic proposal for calcareous sponges. Integrative and Comparative Biology, 53(3), 447–461.CrossRefPubMedGoogle Scholar
  25. Klautau, M., Imešek, M., Azevedo, F., Pleše, B., Nikolić, V., & Ćetković, H. (2016). Adriatic calcarean sponges (Porifera, Calcarea), with the description of six new species and a richness analysis. European Journal of Taxonomy, 178(178), 1–52.  https://doi.org/10.5852/ejt.2016.178.CrossRefGoogle Scholar
  26. Klautau, M., Monteiro, L., & Borojevic, R. (2004). First occurrence of the genus Paraleucilla (Calcarea, Porifera) in the Atlantic Ocean: P. magna sp. nov. Zootaxa, 710, 1–8.Google Scholar
  27. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.CrossRefPubMedGoogle Scholar
  28. Lanna, E., Rattis, L., & Cavalcanti, F. F. (2017). The presence of the diagnostic character of the genus Paraleucilla (Amphoriscidae, Calcarea, Porifera) may depend on the volume and body wall thickness of the sponges. Invertebrate Biology, 136(3), 321–329.  https://doi.org/10.1111/ivb.12185.CrossRefGoogle Scholar
  29. Lavrov, D. V., Adamski, M., Chevaldonné, P., & Adamska, M. (2016). Extensive mitochondrial mRNA editing and unusual mitochondrial genome organization in Calcaronean sponges. Current Biology, 26(1), 86–92.  https://doi.org/10.1016/j.cub.2015.11.043.CrossRefPubMedGoogle Scholar
  30. Lavrov, D. V., Pett, W., Voigt, O., Wörheide, G., Forget, L., Lang, B. F., & Kayal, E. (2013). Mitochondrial DNA of Clathrina clathrus (Calcarea, Calcinea): six lnear chromosomes, fragmented rRNAs, tRNA editing, and a novel genetic code. Molecular Biology and Evolution, 30(4), 865–880.  https://doi.org/10.1093/molbev/mss274.CrossRefPubMedGoogle Scholar
  31. Lavrov, D. V., Wang, X., & Kelly, M. (2008). Reconstructing ordinal relationships in the Demospongiae using mitochondrial genomic data. Molecular Phylogenetics and Evolution, 49, 111–124.  https://doi.org/10.1016/j.ympev.2008.05.014.CrossRefPubMedGoogle Scholar
  32. Longo, C., Mastrototaro, F., & Corriero, G. (2007). Occurrence of Paraleucilla magna (Porifera: Calcarea) in the Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom, 87(6), 1749–1755.  https://doi.org/10.1017/S0025315407057748.CrossRefGoogle Scholar
  33. Manuel, M. (2004). Molecular phylogeny of calcareous sponges using 18S rRNA and 28S rRNA sequences. BMIB-Bollettino dei Musei e degli Istituti Biologici, 68, 449–461.Google Scholar
  34. Manuel, M. (2006). Phylogeny and evolution of calcareous sponges. Canadian Journal of Zoology, 84(2), 225–241.Google Scholar
  35. Manuel, M., Borchiellini, C., Alivon, E., Le Parco, Y., Vacelet, J., Boury-Esnault, N., et al. (2003). Phylogeny and evolution of calcareous sponges: monophyly of Calcinea and Calcaronea, high level of morphological homoplasy, and the primitive nature of axial symmetry. Systematic Biology, 52, 311–333.CrossRefPubMedGoogle Scholar
  36. Morrow, C., & Cárdenas, P. (2015). Proposal for a revised classification of the Demospongiae (Porifera). Frontiers in Zoology, 12(1), 7.  https://doi.org/10.1186/s12983-015-0099-8.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Morrow, C. C., Redmond, N. E., Picton, B. E., Thacker, R. W., Collins, A. G., Maggs, C. A., Sigwart, J. D., & Allcock, A. L. (2013). Molecular phylogenies support homoplasy of multiple morphological characters used in the taxonomy of Heteroscleromorpha (Porifera: Demospongiae). Integrative and Comparative Biology, 53, 428–446.  https://doi.org/10.1093/icb/ict065.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Park, M.-H., & Min, G.-S. (2007). Identification of genes suitable for DNA barcoding of morphologically indistinguishable Korean Halichondriidae sponges. Molecules and Cells, 23(2), 220–227.PubMedGoogle Scholar
  39. Philippe, H., Derelle, R., Lopez, P., Pick, K., Borchiellini, C., Boury-Esnault, N., Vacelet, J., Renard, E., Houliston, E., Quéinnec, E., da Silva, C., Wincker, P., le Guyader, H., Leys, S., Jackson, D. J., Schreiber, F., Erpenbeck, D., Morgenstern, B., Wörheide, G., & Manuel, M. (2009). Phylogenomics revives traditional views on deep animal relationships. Current Biology, 19(8), 706–712.  https://doi.org/10.1016/j.cub.2009.02.052.CrossRefPubMedGoogle Scholar
  40. Plotkin, A., Gerasimova, E., & Rapp, H. T. (2012). Phylogenetic reconstruction of Polymastiidae (Demospongiae: Hadromerida) based on morphology. Hydrobiologia, 687, 21–41.  https://doi.org/10.1007/s10750-011-0823-0.CrossRefGoogle Scholar
  41. Plotkin, A., Voigt, O., Willassen, E., & Rapp, H. T. (2017). Molecular phylogenies challenge the classification of Polymastiidae (Porifera, Demospongiae) based on morphology. Organisms, Diversity and Evolution, 17(1), 45–66.  https://doi.org/10.1007/s13127-016-0301-7.CrossRefGoogle Scholar
  42. Rapp, H. T. (2006). Calcareous sponges of the genera Clathrina and Guancha (Calcinea, Calcarea, Porifera) of Norway (NE Atlantic) with the description of five new species. Zoological Journal of the Linnean Society, 147, 331–365.  https://doi.org/10.1111/j.1096-3642.2006.00221.x.CrossRefGoogle Scholar
  43. Rapp, H. T. (2015). A monograph of the calcareous sponges (Porifera, Calcarea) of Greenland. Journal of the Marine Biological Association of the United Kingdom, 95, 1395–1459.  https://doi.org/10.1017/S0025315413001070.CrossRefGoogle Scholar
  44. Rapp, H. T., Klautau, M., & Valentine, C. (2001). Two new species of Clathrina (Porifera, Calcarea) from the Norwegian coast. Sarsia, 86(1), 69–74.  https://doi.org/10.1080/00364827.2001.10420462.CrossRefGoogle Scholar
  45. Redmond, N. E., Morrow, C. C., Thacker, R. W., Diaz, M. C., Boury-Esnault, N., & Cárdenas, P. (2013). Phylogeny and systematics of Demospongiae in light of new small subunit ribosomal DNA (18S) sequences. Integrative and Comparative Biology, 53, 388–415.  https://doi.org/10.1093/icb/ict078.CrossRefPubMedGoogle Scholar
  46. Rossi, A. L., De Moraes Russo, C. A., SolÉ-Cava, A. M., Rapp, H. T., & Klautau, M. (2011). Phylogenetic signal in the evolution of body colour and spicule skeleton in calcareous sponges. Zoological Journal of the Linnean Society, 163(4), 1026–1034.  https://doi.org/10.1111/j.1096-3642.2011.00739.x.CrossRefGoogle Scholar
  47. RStudio Team. (2016). RStudio: integrated development for R. Boston: RStudio, Inc..Google Scholar
  48. Saitou, N., & Nei, M. (1986). The number of nucleotides required to determine the branching order of three species, with special reference to the human-chimpanzee-gorilla divergence. Journal of Molecular Evolution, 24(1), 189–204.  https://doi.org/10.1007/bf02099966.CrossRefPubMedGoogle Scholar
  49. Simion, P., Philippe, H., Baurain, D., Jager, M., Richter, D. J., Franco, A. D., et al. (2017). A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Current Biology, 27, 958–967.  https://doi.org/10.1016/j.cub.2017.02.031.CrossRefPubMedGoogle Scholar
  50. Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313.  https://doi.org/10.1093/bioinformatics/btu033.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Thacker, R. W., Hill, A. L., Hill, M. S., Redmond, N. E., Collins, A. G., Morrow, C. C., Spicer, L., Carmack, C. A., Zappe, M. E., Pohlmann, D., Hall, C., Diaz, M. C., & Bangalore, P. V. (2013). Nearly complete 28S rRNA gene sequences confirm new hypotheses of sponge evolution. Integrative and Comparative Biology, 53, 373–387.  https://doi.org/10.1093/icb/ict071.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Valderrama, D., Rossi, A. L., Solé-Cava, A. M., Rapp, H. T., & Klautau, M. (2009). Revalidation of Leucetta floridana (Calcarea, Clathrinida, Leucettidae): a wide spread species in the tropical western Atlantic. Zoological Journal of the Linnean Society, 157, 1–16.  https://doi.org/10.1111/j.1096-3642.2009.00522.x.CrossRefGoogle Scholar
  53. van Soest, R. W. M., Boury-Esnault, N., Hooper, J. N. A., Rützler, K., de Voogd, N. J., Alvarez, B., et al. (2018). World Porifera database. Accessed at http://www.marinespecies.org/porifera on 2018–02-22.
  54. Voigt, O., Erpenbeck, D., González-Pech, R. A., Al-Aidaroos, A. M., Berumen, M. L., & Wörheide, G. (2017). Calcinea of the Red Sea: providing a DNA barcode inventory with description of four new species. Marine Biodiversity, 47, 1–26.  https://doi.org/10.1007/s12526-017-0671-x.CrossRefGoogle Scholar
  55. Voigt, O., Erpenbeck, D., & Wörheide, G. (2008). Molecular evolution of rDNA in early diverging Metazoa: first comparative analysis and phylogenetic application of complete SSU rRNA secondary structures in Porifera. BMC Evolutionary Biology, 8, 69.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Voigt, O., & Wörheide, G. (2016). A short LSU rRNA fragment as a standard marker for integrative taxonomy in calcareous sponges (Porifera: Calcarea). Organisms, Diversity and Evolution, 16(1), 53–64.  https://doi.org/10.1007/s13127-015-0247-1.CrossRefGoogle Scholar
  57. Voigt, O., Wülfing, E., & Wörheide, G. (2012). Molecular phylogenetic evaluation of classification and scenarios of character evolution in calcareous sponges (Porifera, class Calcarea). PLoS One, 7(3), e33417.  https://doi.org/10.1371/journal.pone.0033417.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Wörheide, G. (2006). Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Marine Biology, 148, 907–912.CrossRefGoogle Scholar
  59. Wörheide, G., Dohrmann, M., Erpenbeck, D., Larroux, C., Maldonado, M., Voigt, O., et al. (2012). Chapter I: deep phylogeny and evolution of sponges (Phylum Porifera). In M. A. Becerro, M. J. Uriz, M. Maldonado, & T. Xavier (Eds.), Advances in Sponge Science: Phylogeny, Systematics, Ecology (pp. 3–78): Academic Press.Google Scholar
  60. Xavier, J. R., Rachello-Dolmen, P. G., Parra-Velandia, F., Schönberg, C. H. L., Breeuwer, J. A. J., & van Soest, R. W. M. (2010). Molecular evidence of cryptic speciation in the “cosmopolitan” excavating sponge Cliona celata (Porifera, Clionaidae). Molecular Phylogenetics and Evolution, 56(1), 13–20.  https://doi.org/10.1016/j.ympev.2010.03.030.CrossRefPubMedGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2018

Authors and Affiliations

  1. 1.Department of Biological Sciences and K.G. Jebsen Centre for Deep-Sea ResearchUniversity of BergenBergenNorway
  2. 2.Uni Research, Uni EnvironmentBergenNorway

Personalised recommendations