Advertisement

Organisms Diversity & Evolution

, Volume 18, Issue 3, pp 313–325 | Cite as

Evolutionary pattern of the forewing shape in the Neotropical genus of jumping plant-lice (Hemiptera: Psylloidea: Russelliana)

  • Liliya Štarhová SerbinaEmail author
  • Bastien Mennecart
Original Article
  • 140 Downloads

Abstract

Geometric morphometric and phylogenetic analyses, applied to 43 species of Russelliana, shed light on the evolution of insect wing shape. Unconstrained and constrained ordination techniques are introduced to detect patterns of the forewing shape variation within genus. Results show a high congruence between forewing shape variation and host-plant preference supporting monophyly of most phylogenetic groups in Russelliana. Reconstruction of the ancestral forewing state shows its similarity to a forewing shape of Solanaceae feeding species defined as ancestors by the phylogenetic study supporting a hypothesis as to a primary association of Russelliana with Solanaceae. In contrast to some other comparative studies on insect wing shape, results of the present study reveal a strong correlation between variation of forewing shape in Russelliana and its phylogeny. Potential influence of vicariant events and host shifts on the evolution of forewing shape is discussed.

Keywords

Psyllids Geometric morphometrics Phylogeny Wing shape Geographical vicariance Host shift Solanaceae 

Notes

Acknowledgements

This study was funded to LS by a grant of the Freiwillige Akademische Gesellschaft (FAG), Basel and the Swiss National Science Foundation (SNSF; P2BSP3_168733). We are grateful to Daniel Burckhardt and Igor Malenovský for stimulating discussions and constructive critics. We also thank Michael Ohl and an anonymous reviewer for their useful comments and suggestions, which helped to improve the paper.

Supplementary material

13127_2018_367_MOESM1_ESM.docx (13 kb)
Supplementary Table 2 P-values from permutation test for Mahalanobis distances among mean forewing shape configurations of Russelliana a priori groupings. Insignificant p-values are in bold. (DOCX 13 kb)

References

  1. Adams, D. C., & Rosenberg, M. S. (1998). Partial warps, phylogeny, and ontogeny: a comment on fink and Zelditch. Systematic Biology, 47(1), 168–173.CrossRefPubMedGoogle Scholar
  2. Alves, V. M., Moura, M. O., & de Carvalho, C. J. B. (2016). Wing shape is influenced by environmental variability in Polietina orbitalis (Stein) (Diptera: Muscidae). Revista Brasileira de Entomologia, 60, 150–156.CrossRefGoogle Scholar
  3. Bai, M., McCullough, E., Song, K.-Q., Liu, W.-G., & Yang, X.-K. (2011). Evolutionary constraints in hind wing shape in Chinese dung beetles (Coleoptera: Scarabaeinae). PLoS One, 6(6), 1–12.Google Scholar
  4. Bai, M., Beutel, R. G., Song, K. Q., Liu, W. G., Malqin, H., Li, S., Hu, X. Y., & Yang, X. K. (2012). Evolutionary patterns of hind wing morphology in dung beetles (Coleoptera: Scarabaeinae). Arthropod Structure & Development, 41, 505–513.CrossRefGoogle Scholar
  5. Benítez, H. A., Lemic, D., Bažok, R., Gallardo-Araya, C. M., & Mikac, K. M. (2014). Evolutionary directional asymmetry and shape variation in Diabrotica virgifera (Coleoptera: Chrysomelidae): an example using hind wings. Biological Journal of the Linnean Society, 111(1), 110–118.CrossRefGoogle Scholar
  6. Burckhardt, D. (2005). Biology, ecology, and evolution of gall-inducing psyllids (Hemiptera: Psylloidea). In A. Raman, C. W. Schaefer, & T. M. Withers (Eds.), Biology, ecology, and evolution of gall-inducing arthropods: Volume 1 (pp. 143–157). Enfield: Science Publishers, Inc..Google Scholar
  7. Burckhardt, D. (2008). Jumping plant-lice (Hemiptera, Psylloidea) associated with Diostea (Verbenaceae). Deutsche Entomologische Zeitschrift, 55(1), 79–89.CrossRefGoogle Scholar
  8. Burckhardt, D., & Basset, Y. (2000). The jumping plant-lice (Hemiptera, Psylloidea) associated with Schinus (Anacardiaceae): systematics, biogeography and host-plant relationships. Journal of Natural History, 34(1), 57–155.CrossRefGoogle Scholar
  9. Burckhardt, D., & Mifsud, D. (2003). Jumping plant-lice of the Paurocephalinae (Insecta, Hemiptera, Psylloidea): systematics and phylogeny. [Article; Meeting paper]. Contributions to Natural History (Bern), 2, 3–34.Google Scholar
  10. Burckhardt, D., & Ouvrard, D. (2007). The taxonomy, biogeography and host plant relationships of jumping plant-lice (Hemiptera: Psyllidae) associated with creosote bushes (Larrea spp., Zygophyllaceae). Systematic Entomology, 32(1), 136–155.CrossRefGoogle Scholar
  11. Burckhardt, D., Ouvrard, D., Queiroz, D., & Percy, D. (2014). Psyllid host-plants (Hemiptera: Psylloidea): resolving a semantic problem. Florida Entomologist, 97(1), 242–246.CrossRefGoogle Scholar
  12. Charistos, L., Hatjina, F., Bouga, M., Mladenovic, M., & Maistros, A. D. (2014). Morphological discrimination of Greek honey bee populations based on geometric Morphometrics analysis of wing shape. Journal of Apicultural Science, 58(1), 75–84.CrossRefGoogle Scholar
  13. Chazot, N., Panara, S., Zilbermann, N., Blandin, P., Le Poul, Y., Cornette, R., et al. (2016). Morpho morphometrics: shared ancestry and selection drive the evolution of wing size and shape in Morpho butterflies. Evolution, 70(1), 181–194.CrossRefPubMedGoogle Scholar
  14. Domínguez, M. C., Agrain, F. A., Flores, G. E., & Roig-Juñent, S. A. (2016). Vicariance events shaping southern south American insect distributions. Zoologica Scripta, 45, 504–511.CrossRefGoogle Scholar
  15. Ennos, A. R. (1989). The effect of size on the optimal shapes of gliding insects and seeds. Journal of Zoology, 219, 61–69.CrossRefGoogle Scholar
  16. Fink, W. L., & Zelditch, M. L. (1995). Phylogenetic analysis of ontogenetic shape transformations: a reassessment of the piranha genus Pygocentrus (Teleostei). Systematic Biology, 44(3), 343–360.CrossRefGoogle Scholar
  17. Gallesi, M. M., Mobili, S., Cigognini, R., Hardersen, S., & Sacchi, R. (2015). Sexual dimorphism in wings and wing bands of Sympetrum pedemontanum (Müller in Allioni 1776). Zoomorphology, 134(4), 531–540.CrossRefGoogle Scholar
  18. Gidaszewski, N. A., Baylac, M., & Klingenberg, C. P. (2009). Evolution of sexual dimorphism of wing shape in the Drosophila melanogaster subgroup. BMC Evolutionary Biology, 9(1), 110.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Goloboff, P. A. (1999). NONA, Version 2. Tucumán: Published by the author.Google Scholar
  20. Gómez, G. F., Márquez, E. J., Gutiérrez, L. A., Conn, J. E., & Correa, M. M. (2014). Geometric morphometric analysis of Colombian Anopheles albimanus (Diptera: Culicidae) reveals significant effect of environmental factors on wing traits and presence of a metapopulation. Acta Tropica, 135, 75–85.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gushki, R. S., Lashkari, M., & Mirzaei, S. (2018). Identification, sexual dimorphism, and allometric effects of three psyllid species of the genus Psyllopsis by geometric morphometric analysis (Hemiptera, Liviidae). ZooKeys, 737, 57–73.CrossRefGoogle Scholar
  22. Hansen, T. F., & Houle, D. (2004). Evolvability, stabilizing selection, and the problem of stasis. In M. Pigliucci & K. Preston (Eds.), Phenotypic integration: studying the ecology and evolution of complex phenotypes (pp. 130–150). Oxford: Oxford University Press.Google Scholar
  23. Hodkinson, I. D. (2009). Life cycle variation and adaptation in jumping plant lice (Insecta: Hemiptera: Psylloidea): a global synthesis. Journal of Natural History, 43(1), 65–179.CrossRefGoogle Scholar
  24. Jaramillo-O, N., Dujardin, J.-P., Calle-Londoño, D., & Fonseca-González, I. (2015). Geometric morphometrics for the taxonomy of 11 species of Anopheles (Nyssorhynchus) mosquitoes. Medical and Veterinary Entomology, 29(1), 26–36.CrossRefPubMedGoogle Scholar
  25. Johansson, F., Söderquist, M., & Bokma, F. (2009). Insect wing shape evolution: independent effects of migratory and mate guarding flight on dragonfly wings. Biological Journal of the Linnean Society, 97, 362–372.CrossRefGoogle Scholar
  26. Jorge, L. R., Cordeiro-Estrela, P., Klaczko, L. B., Moreira, G. R. P., & Freitas, A. V. L. (2011). Host-plant dependent wing phenotypic variation in the neotropical butterfly Heliconius erato. Biological Journal of the Linnean Society, 102(4), 765–774.CrossRefGoogle Scholar
  27. Klingenberg, C. P. (2002). Morphometrics and the role of the phenotype in studies of the evolution of developmental mechanisms. Gene, 287, 3–10.CrossRefPubMedGoogle Scholar
  28. Klingenberg, C. P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11, 353–357.CrossRefPubMedGoogle Scholar
  29. Klingenberg, C. P., & Monteiro, L. R. (2005). Distances and Directions in Multidimensional Shape Spaces: Implications for Morphometric Applications. Systematic Biology, 54(4), 678–688.Google Scholar
  30. Klingenberg, C. P., & Gidaszewski, N. A. (2010). Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Systematic Biology, 59(3), 245–261.CrossRefPubMedGoogle Scholar
  31. Kopp, A. (2006). Basal relationships in the Drosophila melanogaster species group. Molecular Phylogenetics and Evolution, 39(3), 787–798.CrossRefPubMedGoogle Scholar
  32. Lashkari, M. R., Sahragard, A., Manzari, S., Mozaffarian, F., & Hosseini, R. (2013). A geometric morphometric study of the geographic populations of Asian citrus psyllid, Diaphorina citri (Hem.: Liviidae), in Iran and Pakistan. Journal of Entomological Society of Iran, 33(2), 59–71.Google Scholar
  33. Maddison, W. P., & Maddison, D. R. (2015). Mesquite: a modular system for evolutionary analysis. Version 3.04. http://mesquiteproject.org. Accessed 28 May 2016.
  34. Mennecart, B., & Costeur, L. (2016). Shape variation and ontogeny of the ruminant bony labyrinth, an example in Tragulidae. Journal of Anatomy, 229, 422–435.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mennecart, B., Becker, D., & Berger, J.-P. (2011). Iberomeryx minor (Mammalia, Artiodactyla) from the early Oligocene of Soulce (Canton Jura, NW Switzerland): Systematics and palaeodiet. Swiss Journal of Geosciences, 104(1), 115–132.CrossRefGoogle Scholar
  36. Mondal, R., Devi, N. P., & Jauhari, R. K. (2015). Landmark-based geometric morphometric analysis of wing shape among certain species of Aedes mosquitoes in district Dehradun (Uttarakhand), India. Journal of Vector Borne Diseases, 52(2), 122–128.PubMedGoogle Scholar
  37. Muñoz-Muñoz, F., Talavera, S., & Pagès, N. (2011). Geometric Morphometrics of the wing in the subgenus Culicoides (Diptera: Ceratopogonidae): from practical implications to evolutionary interpretations. Journal of Medical Entomology, 48(2), 129–139.CrossRefPubMedGoogle Scholar
  38. Muñoz-Muñoz, F., Talavera, S., Carpenter, S., Nielsen, S. A., Werner, D., & Pagès, N. (2014). Phenotypic differentiation and phylogenetic signal of wing shape in western European biting midges, Culicoides spp., of the subgenus Avaritia. Medical and Veterinary Entomology, 28(3), 319–329.CrossRefPubMedGoogle Scholar
  39. Nixon, K. C. (2002) WinClada ver. 1.00.08. Published by the author, Ithaca, NY.Google Scholar
  40. Oettlé, A. C., Pretorius, E., & Steyn, M. (2005). Geometric morphometric analysis of mandibular ramus flexure. American Journal of Physical Anthropology, 128(3), 623–629.CrossRefPubMedGoogle Scholar
  41. Ouvrard, D., Chalise, P., & Percy, D. (2015). Host-plant leaps versus host-plant shuffle: a global survey reveals contrasting patterns in an oligophagous insect group (Hemiptera, Psylloidea). Systematics and Biodiversity, 1–21,  https://doi.org/10.1080/14772000.2015.1046969.
  42. Palacino-Rodríguez, F., González-Soriano, E., & Sarmiento, C. E. (2014). Phylogenetic signal of subsets of morphological characters: a case study in the genus Erythemis (Anisoptera: Libellulidae). Caldasia, 36(1), 85–106.CrossRefGoogle Scholar
  43. Pepinelli, M., Spironello, M., & Currie, D. C. (2013). Geometric morphometrics as a tool for interpreting evolutionary transitions in the black fly wing (Diptera: Simuliidae). Zoological Journal of the Linnean Society, 169(2), 377–388.CrossRefGoogle Scholar
  44. Percy, D. M. (2003). Radiation, diversity, and host-plant interactions among island and continental legume-feeding psyllids. Evolution, 57(11), 2540–2556.CrossRefPubMedGoogle Scholar
  45. Percy, D. M., Page, R. D. M., & Cronk, Q. C. B. (2004). Plant-insect interactions: double-dating associated insect and plant lineages reveals asynchronous radiations. Systematic Biology, 53(1), 120–127.CrossRefPubMedGoogle Scholar
  46. Perrard, A., Baylac, M., Carpenter, J. M., & Villemant, C. (2014). Evolution of wing shape in hornets: why is the wing venation efficient for species identification? Journal of Evolutionary Biology, 27(12), 2665–2675.CrossRefPubMedGoogle Scholar
  47. Perrard, A., Lopez-Osorio, F., & Carpenter, J. M. (2015). Phylogeny, landmark analysis and the use of wing venation to study the evolution of social wasps (Hymenoptera: Vespidae: Vespinae). Cladistics, 1–20.Google Scholar
  48. Ramos, V. A. (2009). Anatomy and global context of the Andes: main geologic features and the Andean orogenic cycle. In S. M. Kay, V. A. Ramos, & W. R. Dickinson (Eds.), Geological Society of America (pp. 31–65, Backbone of the Americas: Shallow subduction, plateau uplift, and ridge and terrane collision). Boulder: Memoir 204.Google Scholar
  49. Rohlf, F. J. (1998). On applications of geometric morphometrics to studies of ontogeny and phylogeny. Systematic Biology, 47(1), 147–158.CrossRefPubMedGoogle Scholar
  50. Rohlf, F. J. (2006). A comment on phylogenetic correction. Evolution, 60(7), 1509–1515.CrossRefPubMedGoogle Scholar
  51. Rohlf, F. J. (2015a). tpsDig, version 2.27. http://life.bio.sunysb.edu/ee/rohlf/software.html. Accessed 4 June 2015.
  52. Rohlf, F. J. (2015b). tpsRelw, version 1.11. http://life.bio.sunysb.edu/ee/rohlf/software.html. Accessed 4 June 2015.
  53. Rull, V. (2011). Neotropical biodiversity: timing and potential drivers. Trends in Ecology & Evolution, 26, 508–513.CrossRefGoogle Scholar
  54. Serbina, L., & Burckhardt, D. (2017). Systematics, biogeography and host-plant relationships of the Neotropical jumping plant-louse genus Russelliana (Hemiptera: Psylloidea). Zootaxa, 4266(1), 001–114.CrossRefGoogle Scholar
  55. Serbina, L., Burckhardt, D., Birkhofer, K., Syfert, M. M., & Halbert, S. E. (2015). The potato pest Russelliana solanicola Tuthill (Hemiptera: Psylloidea): taxonomy and host-plant patterns. Zootaxa, 4021(1), 33–62.CrossRefPubMedGoogle Scholar
  56. Smith, B. T., McCormack, J. E., Cuervo, A. M., Hickerson, M. J., Aleixo, A., Cadena, C. D., et al. (2014). The drivers of tropical speciation. Nature, 515(7527), 406–409.  https://doi.org/10.1038/nature13687.CrossRefPubMedGoogle Scholar
  57. Stayton, C. T. (2005). Morphological evolution of the lizard skull: a geometric morphometrics survey. Journal of Morphology, 263(1), 47–59.CrossRefPubMedGoogle Scholar
  58. Su, J., Guan, K., Wang, J., & Yang, Y. (2015). Significance of hind wing morphology in distinguishing genera and species of cantharid beetles with a geometric morphometric analysis. ZooKeys, 502, 11–25.CrossRefGoogle Scholar
  59. Syfert, M. M., Serbina, L., Burckhardt, D., Knapp, S., & Percy, D. M. (2017). Emerging new crop pests: ecological modelling and analysis of the south American potato psyllid Russelliana solanicola (Hemiptera: Psylloidea) and its wild relatives. PLoS One, 12(1), 1–18.  https://doi.org/10.1371/journal.pone.0167764.CrossRefGoogle Scholar
  60. Zelditch, M. L., Fink, W. L., Swiderski, D. L., & Lundrigan, B. L. (1998). On applications of geometric morphometrics to studies of ontogeny and phylogeny: a reply to Rohlf. Systematic Biology, 47(1), 159–167.CrossRefGoogle Scholar
  61. Zelditch, M. L., Swiderski, D. L., & Sheets, D. H. (2012). Geometric morphometrics for biologists, second edition: a primer. USA: Elsevier Science Publishing Co Inc..Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2018

Authors and Affiliations

  1. 1.Faculty of Science, Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
  2. 2.Naturhistorisches Museum BaselBaselSwitzerland
  3. 3.Naturhistorisches Museum WienViennaAustria

Personalised recommendations