Advertisement

Organisms Diversity & Evolution

, Volume 18, Issue 2, pp 241–259 | Cite as

Ecological and evolutionary diversification in the Australo-Papuan scrubwrens (Sericornis) and mouse-warblers (Crateroscelis), with a revision of the subfamily Sericornithinae (Aves: Passeriformes: Acanthizidae)

  • Janette A. NormanEmail author
  • Les Christidis
  • Richard Schodde
Original Article

Abstract

Understanding how the complex geotectonic and climatic history of the Australo-Papuan region has promoted the ecological and evolutionary diversification of its avifauna remains a challenge. Outstanding questions relate to the nature and timing of biogeographical connections between Australia and the emerging island of New Guinea and the mechanisms by which distinctive altitudinal replacement sequences have evolved amongst congeneric species in montane New Guinea. Here, we combine analyses of phylogenetic and eco-morphological data to investigate ecological and evolutionary patterns of diversification in the largely mesic-adapted Australo-Papuan scrubwrens (Sericornis) and mouse-warblers (Crateroscelis). We find evidence of ecological convergence and present a revised taxonomic and systematic treatment of the subfamily integrating information from new (ND2) and existing molecular phylogenetic reconstructions. Biogeographical connections indicate at least three phases of faunal interchange between Australia and New Guinea commencing in the mid to late Miocene. We also find little support for the proposed time dependency of ecological sorting mechanisms linked to divergence in foraging niche amongst altitudinal replacements. Instead, physiological adaptations to hypoxia and increased thermal efficiency at higher altitudes may better account for observed patterns of diversification in montane New Guinea. Indirect support for this hypothesis is derived from molecular clock calibrations that indicate a pulse of diversification across the Miocene-Pliocene boundary coincident with a phase of rapid mountain uplift. Simple ecological and climatic models appear inadequate for explaining observed patterns and mechanisms of diversification in the New Guinean montane avifauna. Further insights will require multidisciplinary research integrating geotectonic, palaeoclimatic, genetic, ecological and physiological approaches.

Keywords

Sericornithinae Phylogeny Biogeography Altitudinal speciation Scrubwren New Guinea 

Notes

Acknowledgements

We thank Leo Joseph and Robert Palmer for granting access to specimens in the ANWC. This research was supported by a grant to LC under the National Computational Merit Allocation Scheme.

Supplementary material

13127_2018_364_MOESM1_ESM.docx (334 kb)
ESM 1 (DOCX 333 kb)
13127_2018_364_MOESM2_ESM.xlsx (15 kb)
ESM 2 (XLSX 14 kb)
13127_2018_364_MOESM3_ESM.xlsx (13 kb)
ESM 3 (XLSX 13 kb)
13127_2018_364_MOESM4_ESM.xlsx (11 kb)
ESM 4 (XLSX 11 kb)

References

  1. Aggerbeck, M., Fjeldså, J., Christidis, L., Fabre, P.-H., & Jønsson, K. A. (2014). Resolving deep lineage divergences in core corvoid passerine birds supports a proto-Papuan island origin. Molecular Phylogenetics and Evolution, 70, 272–285.PubMedCrossRefGoogle Scholar
  2. Altshuler, D. L., & Dudley, R. (2006). The physiology and biomechanics of avian flight at high altitude. Integrative and Comparative Biology, 46, 62–71.PubMedCrossRefGoogle Scholar
  3. Atahan, P., Dodson, J., & Itzstein-Davey, F. (2004). A fine-resolution pollen and charcoal record from Yallalie, south-western Australia. Journal of Biogeography, 31, 199–205.CrossRefGoogle Scholar
  4. Baldwin, S. L., Fitzgerald, P. G., & Webb, L. E. (2012). Tectonics of the New Guinea region. Annual Review of Earth and Planetary Sciences, 40, 495–520.CrossRefGoogle Scholar
  5. Bears, H., Martin, K., & White, G. C. (2009). Breeding in high-elevation habitat results in shift to slower life-history strategy within a single species. Journal of Animal Ecology, 78, 365–375.PubMedCrossRefGoogle Scholar
  6. Beehler, B. M., & Pratt, T. K. (2016). Birds of New Guinea: distribution, taxonomy and systematics. Princeton and Oxford: Princeton University Press.CrossRefGoogle Scholar
  7. Bennett, M. B. (1996). Allometry of leg muscles of birds. Journal of Zoology, 238, 435–443.CrossRefGoogle Scholar
  8. Bergsten, J., Nilsson, A. N., & Ronquist, F. (2013). Bayesian tests of topology with an example from diving beetles. Systematic Biology, 62, 660–673.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Blackburn, T. M., Gaston, K. J., & Loder, N. (1999). Geographic gradients in body size: a clarification of Bergmann’s rule. Diversity and Distributions, 5, 165–174.CrossRefGoogle Scholar
  10. Breuner, C. W., Sprague, R. S., Patterson, S. H., & Woods, H. A. (2013). Environment, behaviour and physiology: do birds use barometric pressure to predict storms? The Journal of Experimental Biology, 216, 1982–1990.PubMedCrossRefGoogle Scholar
  11. Cannon, H. C., Morley, R. J., & Bush, A. B. G. (2009). The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proceedings of the National Academy of Sciences USA, 106, 11188–11193.CrossRefGoogle Scholar
  12. Chapple, D. G., Hoskin, C. J., Chapple, S. N. J., & Thompson, M. B. (2011). Phylogeographic divergence in the widespread delicate skink (Lampropholis delicate) corresponds to dry habitat barriers in eastern Australia. BMC Evolutionary Biology, 11, 191.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chivas, A. R., Garcia, A., van der Kaars, S., Couapel, M., Holt, S., Reeves, J. M., et al. (2001). Sea-level and environmental changes since the last interglacial in the Gulf of Carpentaria, Australia: an overview. Quarternary International, 83, 19–46.CrossRefGoogle Scholar
  14. Christidis, L., & Boles, W. E. (2008). Systematics and taxonomy of Australian birds. Melbourne: CSIRO Publishing.Google Scholar
  15. Christidis, L., & Norman, J. A. (2010). Evolution of the Australasian songbird fauna. Emu, 110, 21–31.CrossRefGoogle Scholar
  16. Christidis, L., Schodde, R., & Baverstock, P. R. (1988). Genetic and morphological differentiation and phylogeny in the Australo-Papuan scrubwrens (Sericornis, Acanthizidae). Auk, 105, 616–629.Google Scholar
  17. Christidis, L., Irestedt, M., Rowe, D., Boles, W. E., & Norman, J. A. (2011). Mitochondrial and nuclear DNA phylogenies reveal a complex evolutionary history in the Australasian robins (Passeriformes: Petroicidae). Molecular Phylogenetics and Evolution, 61, 726–738.PubMedCrossRefGoogle Scholar
  18. Cibois, A., Thibault, J.-C., Bonillo, C., Filardi, C. E., & Pasquet, E. (2017). Phylogeny and biogeography of the imperial pigeons (Aves: Columbidae) in the Pacific Ocean. Molecular Phylogenetics and Evolution, 110, 19–26.PubMedCrossRefGoogle Scholar
  19. Cloos, M., Sapiie, B., van Ufford, A. Q., Weiland, R. J., Warren, P. Q., & McMajon, T. P. (2005). Collisional delamination in New Guinea: the geotectonics of subducting slab breakoff. Geological Society of America Special Paper, 400, 1–51.Google Scholar
  20. Coates, B. J. (1990). The birds of Papua New Guinea (Vol. II). Hong Kong: Dove Publications.Google Scholar
  21. Conover, M. R., & Miller, D. E. (1980). Rictal bristle function in willow flycatcher. Condor, 82, 469–471.CrossRefGoogle Scholar
  22. Cunningham, S. J., Alley, M. R., & Castro, I. (2011). Facial bristle feather histology and morphology in New Zealand birds: implications for function. Journal of Morphology, 272, 118–128.PubMedCrossRefGoogle Scholar
  23. Davies, H. L. (2012). The geology of New Guinea—the cordilleran margin of the Australian continent. Episodes, 35, 87–102.Google Scholar
  24. De Vis, C. W. (1894). Annual report on British ew Guinea, 1893-1894. Government Printer, Brisbane: Appendix.Google Scholar
  25. De Vis, C. W. (1898). Annual report on British New Guinea, 1896-1897. In Appendix A. Brisbane: Government Printer.Google Scholar
  26. R development Core Team. (2011). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org
  27. Diamond, J. M. (1972). Avifauna of the eastern highlands of New Guinea. Publication of the Nuttall Ornithological Club, 12, 1–438.Google Scholar
  28. Diamond, J. M. (1973). Distributional ecology of new Guinea birds. Science, 179, 759–769.PubMedCrossRefGoogle Scholar
  29. Diamond, J. M. (1986). Evolution of ecological segregation in the New Guinea montane avifauna. In J. Diamond & T. Case (Eds.), Community ecology (pp. 98). New York: Harper and Row.Google Scholar
  30. Dickinson, E. C., & Christidis, L. (2014). The Howard and Moore complete checklist of the birds of the world, Ed. 4, vol. 2. In Passerines. Eastbourne: Aves Press.Google Scholar
  31. Dionne, M., Maurice, C., Gauthier, J., & Shaffer, F. (2008). Impact of hurricane Wilma on migrating birds: the case of the chimney swift. The Wilson Journal of Ornithology, 120, 784–792.CrossRefGoogle Scholar
  32. Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dubay, S. G., & Witt, C. C. (2014). Differential high-altitude adaptation and restricted gene flow across a mid-elevation hybrid zone in Andean tit-tyrant flycatchers. Molecular Ecology, 23, 3551–3565.PubMedCrossRefGoogle Scholar
  34. Dumbacher, J. P., Deiner, K., Thompson, L., & Fleischer, R. C. (2008). Phylogeny of the avian genus Pitohui and the evolution of toxicity in birds. Molecular Phylogenetics and Evolution, 49, 774–781.PubMedCrossRefGoogle Scholar
  35. Edgar, N., Cecil, C., Mattick, R., et al. (2003). A modern analogue for tectonic, eustatic, and climatic processes in cratonic basins: Gulf of Carpentaria, Northern Australia, in C. B. Cecil and N. T. Edgar (ed.), Climate controls on stratigraphy, Society for Sedimentary Geology, Reston, pp. 193–205.Google Scholar
  36. Fedorov, A. V., Brierley, C. M., Lawrence, K. T., Liu, Z., Dekens, P. S., & Ravelo, A. C. (2010). Patterns and mechanisms of early Pliocene warmth. Nature, 496, 43–49.CrossRefGoogle Scholar
  37. Fuchs, J., Fjeldså, J., & Bowie, R. C. K. (2011). Diversification across an altitudinal gradient in the tiny greenbul (Phyllastrephus debilis) from the Eastern Arc Mountains of Africa. BMC Evolutionary Biology, 11, 117.  https://doi.org/10.1186/1471-218-11-117.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Funk, W. C., Murphy, M. A., Hoke, K. L., Muths, E., Amburgey, S. M., Lemmon, E. M., & Lemmon, A. R. (2016). Elevational speciation in action? Restricted gene flow associated with adaptive divergence across an altitudinal gradient. Journal of Evolutionary Biology, 29, 241–252.PubMedCrossRefGoogle Scholar
  39. Gardner, J. L., Trueman, J. W. H., Ebert, D., Joseph, L., & Magrath, R. D. (2010). Phylogeny and evolution of the Meliphagoidea, the largest radiation of Australasian songbirds. Molecular Phylogenetics and Evolution, 55, 1087–1102.PubMedCrossRefGoogle Scholar
  40. Gosler, A. G. (1987). Pattern and process in the bill morphology of the great tit Parus major. Ibis, 129, 451–476.CrossRefGoogle Scholar
  41. Gould, J. (1838). A synopsis of birds of Australia and the Adjacent Islands. Part 4. London: J Gould.Google Scholar
  42. Gould, J. (1841). Completed exhibition of his fifty new species of Australian birds. Proceedings of the Zoological Society of London, 1840, 169–179.Google Scholar
  43. Gould, J. (1843). Descriptions of thirty new species of birds from Australia. Proceedings of the Zoological Society of London, 1842, 131–140.Google Scholar
  44. Gould, J. (1847). Descriptions of six new species of Australian birds. Proceedings of the Zoological Society of London, 1847, 1–3.Google Scholar
  45. Gould, J. (1851). Descriptions of new birds. Proceedings of the Zoological Society of London, 1850, 91–95.Google Scholar
  46. Gray, G. R. (1859). List of the birds lately sent by Mr. A.R. Wallace from Dorey or Dorery, New Guinea. Proceedings of the Zoological Society of London, 1859, 153–159.Google Scholar
  47. Grubb, P. J. (1971). Interpretation of the ‘Massenerhebung effect’ on tropical mountains. Nature, 299, 44–45.CrossRefGoogle Scholar
  48. Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20, 1–431.CrossRefGoogle Scholar
  49. Heled, J., & Drummond, A. J. (2012). Calibrated tree priors for relaxed phylogenetics and divergence time estimation. Systematic Biology, 61, 138–149.PubMedCrossRefGoogle Scholar
  50. Herold, N., Huber, M., Greenwood, D. R., Müller, R. D., & Seton, M. (2011). Early to middle Miocene monsoon climate in Australia. Geology, 39, 3–6.CrossRefGoogle Scholar
  51. Higgins, P. J., & Peter, J. M. (2002). Handbook of Australian, New Zealand and Antarctic birds. Volume 6: Pardalotes to shrike-thrushes. Melbourne: Oxford University Press.Google Scholar
  52. Ho, S. Y., Shapiro, B., Phillips, M. J., Cooper, A., & Drummond, A. J. (2007). Evidence for time dependency of molecular rate estimates. Systematic Biology, 56, 515–522.PubMedCrossRefGoogle Scholar
  53. Ho, S. Y., Lanfear, R., Bromham, L., Phillips, M. J., Soubrier, J., Rodrigo, A. G., et al. (2011). Time-dependent rates of molecular evolution. Molecular Ecology, 20, 3087–3101.PubMedCrossRefGoogle Scholar
  54. Jønsson, K. A., Bowie, R. C. K., Norman, J. A., Christidis, L., & Fjeldså, J. (2008). Polyphyletic origin of toxic Pitohui birds suggests widespread occurrence of toxicity in corvoid birds. Biology Letters, 4, 71–74.PubMedCrossRefGoogle Scholar
  55. Joseph, L., & Moritz, C. (1993). Phylogeny and historical aspects of the ecology of eastern Australian scrubwrens Sericornis spp.—evidence from mitochondrial DNA. Molecular Ecology, 2, 161–170.PubMedCrossRefGoogle Scholar
  56. Kearns, A. M., Joseph, L., Omland, K. E., & Cook, L. G. (2011). Testing the effect of transient Plio-Pleistocene barriers in moonsoonal Australo-Papua: did magrove habitats maintain genetic connectivity in the Black Butcherbird? Molecular Ecology, 20, 5042–5059.PubMedCrossRefGoogle Scholar
  57. Kreft, H., & Jetz, W. (2010). A framework for delineating biogeographic regions based on species distributions. Journal of Biogeography, 37, 2029–2053.CrossRefGoogle Scholar
  58. Kuch, U., Keogh, J. S., Weigel, J., Smith, L. A., & Mebs, D. (2005). Phylogeography of Australia’s king brown snake (Pseudechis australis) reveals Pliocene divergence and Pleistocene dispersal of a top predator. Naturwissenschaften, 92, 121–127.PubMedCrossRefGoogle Scholar
  59. Latham, J. (1801). Supplementum Indicis Ornithologici, sive Systematis Ornithologiae. London: G. Leigh, J. & S. Sotheby.Google Scholar
  60. Lederer, R. J. (1972). The role of avian rictal bristles. Wilson Bulletin, 84, 193–197.Google Scholar
  61. Lerner, H. R., Meyer, M., James, H. F., Hofreietr, M., & Fleischer, R. C. (2011). Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers. Current Biology, 8, 1838–1844.CrossRefGoogle Scholar
  62. Lewin, J.W. (1808). Birds of New Holland with their natural history, collected, engraved, and faithfully painted after nature. J. White & S. Bagster, London.Google Scholar
  63. Macqueen, P., Seddon, J. M., Austin, J. J., Hamilton, S., & Goldizen, A. W. (2010). Phylogenetics of the pademelons (Macropodidae: ) and historical biogeography of the Australo-Papuan region. Molecular Phylogenetics and Evolution, 57, 1134–1148.PubMedCrossRefGoogle Scholar
  64. Malekian, M., Cooper, S. J. B., Norman, J., Christidis, L., & Carthew, S. M. (2010). Molecular systematics and evolutionary origins of the genus Petaurus (Marsupialia, Petauridae) in Australia and New Guinea. Molecular Phylogenetics and Evolution, 54, 122–135.PubMedCrossRefGoogle Scholar
  65. Marki, P. Z., Jønsson, K. A., Irestedt, M., Nguyen, J. M. T., Rahbek, C., & Fjeldså, J. (2017). Supermatrix phylogeny and biogeography of the Australasian Meliphagides radiation (Aves: Passeriformes). Molecular Phylogenetics and Evolution, 107, 516–529.PubMedCrossRefGoogle Scholar
  66. Martin, H. A. (2006). Cenozoic climate change and the development of the arid vegetation in Australia. Journal of Arid Environments, 66, 533–563.CrossRefGoogle Scholar
  67. Mathews, G. M. (1920). The birds of Australia. Vol. 8. H. F. & G. Witherby, London.Google Scholar
  68. Mathews, G. M. (1912) A Reference-List to the Birds of Australia. Novitates Zoologicae. 18:171–446Google Scholar
  69. Mathews, G. M. (1916). New generic names, with some notes on others. Austral Avian Record, 2, 55–62. Google Scholar
  70. Mayr, E. (1986). Acanthizidae. In E. Mayr & G. W. Cottrell (Eds.), Check-list of birds of the world, vol. 11 (pp. 409–464). Cambridge, Mass: Museum of Comparative Zoology.Google Scholar
  71. Milligan, A. W. (1903). Descriptions of a new Calamanthus and a new Megalurus from Western Australia. Emu, 2, 200–202.CrossRefGoogle Scholar
  72. Moritz, C., Patton, J. L., Schneider, C. J., & Smith, T. B. (2000). Diversification of rainforest faunas: an integrated molecular approach. Annual Review of Ecology and Sytematics, 31, 533–563.CrossRefGoogle Scholar
  73. Moyle, R. G., Oliveros, C. H., Andersen, M. J., Hosner, P. A., Benz, B. W., Manthey, J. D., Travers, S. L., Brown, R. M., & Faircloth, B. C. (2016). Tectonic collision and uplift of Wallacea triggered the global songbird radiation. Nature Communications, 7, 12709.  https://doi.org/10.1038/ncomms12709.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Nix, H. A., & Kalma, J. D. (1972). Climate as a dominant control in the biogeography of northern Australia and New Guinea. In D. Walker (Ed.), Bridge and barrier, a natural and cultural history of Torres Strait (pp. 61–91). Canberra: Australian National University.Google Scholar
  75. Norman, J. A., & Christidis, L. (2016). Ecological opportunity and the evolution of habitat preferences in an arid-zone bird: implications for speciation in a climate-modified landscape. Scientific Reports, 6, 19613.  https://doi.org/10.1038/srep19613.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Norman, J. A., Christidis, L., Westerman, M., & Hill, F. A. R. (1998). Molecular data confirms the species status of the Christmas Island hawk-owl Ninox natalis. Emu, 98, 197–208.CrossRefGoogle Scholar
  77. Norman, J. A., Rheindt, F. E., Rowe, D. L., & Christidis, L. (2007). Speciation dynamics in the Australo-Papuan Meliphaga honeyeaters. Molecular Phylogenetics and Evolution, 42, 80–91.PubMedCrossRefGoogle Scholar
  78. Norman, J. A., Boles, W. E., & Christidis, L. (2009a). Relationships of the New Guinean songbird genera Amalocichla and Pachycare based on mitochondrial and nuclear DNA sequences. Journal of Avian Biology, 40, 1–6.CrossRefGoogle Scholar
  79. Norman, J. A., Ericson, P. G. P., Jønsson, K. A., Fjeldså, J., & Christidis, L. (2009b). A multi-gene phylogeny reveals novel relationships for aberrant genera of Australo-Papuan core Corvoidea and polyphyly of the Pachycephalidae and Psophodidae (Aves: Passeriformes). Molecular Phylogenetics and Evolution, 52, 488–497.PubMedCrossRefGoogle Scholar
  80. Norman, J. A., Blackmore, C. J., Rourke, M., & Christidis, L. (2014). Effects of mitochondrial DNA rate variation on reconstruction of Pleistocene demographic history in a social avian species, Pomatostomus superciliosus. PLoS One, 9(9), e106267.  https://doi.org/10.1371/journal.pone.0106267.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Nyari, A. S., & Joseph, L. (2012). Evolution in Australasian mangrove forests: multilocus phylogenetic analysis of the Gerygone warblers (Aves: Acanthizidae). PLoS One, 7(2), e31840.  https://doi.org/10.1371/journal.pone.0031840.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Nyari, A. S., & Joseph, L. (2013). Comparative phylogeography of Australo-Papuan mangrove restricted and mangrove-associated avifaunas. Biological Journal of the Linnean Society, 109, 574–598.CrossRefGoogle Scholar
  83. Paijmans, K. (1976). New Guinea vegetation. Canberra: Australian National University Press.Google Scholar
  84. Procheş, S., & Ramdhani, S. (2012). The world’s zoogeographical regions confirmed by cross-taxon analyse. Bioscience, 62, 260–270.  https://doi.org/10.1525/bio.2012.62.3.7.CrossRefGoogle Scholar
  85. Reeves, J. M., Chivas, A. R., Garcia, A., Holt, S., Couapel, M. J. J., Jones, B. G., et al. (2008). The sedimentary record of palaeoenvironments and sea-level change in the Gulf of Carpentaria, Australia, through the last glacial cycle. Quaternary International, 183, 3–22.CrossRefGoogle Scholar
  86. Reichenow, A. (1915). Neue Arten. Journal für Ornithologie, 63, 124–129.CrossRefGoogle Scholar
  87. Remsen Jr., J. V., Powell, A. F. L. A., Schodde, R., Barker, F. K., & Lamjon, S. M. (2016). A revised classification of the Icteridae (Aves) based on DNA sequence data. Zootaxa, 4093, 285–292.PubMedCrossRefGoogle Scholar
  88. Ribas, C. C., Moyle, R. G., Miyaki, C. Y., & Cracraft, J. (2007). The assembly of montane biotas: linking Andean tectonics and climatic oscillations to independent regimes of diversification in Pionus parrots. Proceedings of the Royal Society B: Biological Sciences, 274, 2399–2408.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Salvadori, T. (1874). Nouve specie di uccelli delle Isole Aru e Kei raccolte da Odoardo Beccari. Annali del Museo civico di storia naturale di Genova, 6, 73–80.Google Scholar
  90. Salvadori, T. (1876). Descrizione di ciquantotto nouve specie di uccelli, ed osservazione intorno ad altre poco note, della Nouva Guinea e di altre Isole Papuane, raccolte dal D.´Odoardo Beccari e dai cacciatori del Sig. A. A. Bruijn. Annali del Museo civico di storia naturale di Genova, 7, 896–976.Google Scholar
  91. Salvadori, T. (1894). Viaggio di Lamberto Loria XII. Caraterri di cinque specie nuove di uccelli della Nuova Guinea orientale-meridionale raccolti da L. Loria. Annali del Museo civico di storia naturale di Genova, 34, 150–152.Google Scholar
  92. Salvadori, T. (1896). Viaggio di Lamberto Loria nella Papuasia orientale XV. Collezioni ornitologiche. Annali del Museo civico di storia naturale di Genova, 36, 55–120.Google Scholar
  93. Schäuble, C. S., & Moritz, C. (2001). Comparative phylogeography of two open forest frogs from eastern Australia. Biological Journal of the Linnean Society, 74, 157–170.Google Scholar
  94. Schneider, C. J., Smith, T. B., Larison, B., & Moritz, C. (1999). A test of alternative models of diversification in tropical rainforests: ecological gradients vs. rainforest refugia. Proceedings of the National Academy of Science USA, 96, 13869–13873.CrossRefGoogle Scholar
  95. Schodde, R., & Christidis, L. (2014). Relicts from Tertiary Australasia: undescribed families and subfamilies of songbirds (Passeriformes) and their zoogeographic signal. Zootaxa, 3786, 501–522.PubMedCrossRefGoogle Scholar
  96. Schodde, R., & Hitchcock, W. B. (1972). Birds. In P. Ryan (Ed.), Encyclopedia of Papua and New Guinea, vol. 1 (pp. 67–86). Melbourne: Melbourne University Press.Google Scholar
  97. Schodde, R., & Mason, I. J. (1999). The directory of Australian birds. Passerines: CSIRO Publishing, Canberra.Google Scholar
  98. Sclater, P. L. (1858). On the zoology of New Guinea. Journal of the Linnean Society, Zoology, 2, 149–170.CrossRefGoogle Scholar
  99. Shao, S., Quan, Q., Cai, T., Song, G., Qu, Y., & Lei, F. (2016). Evolution of body morphology and beak shape by a morphometric analysis of 14 Paride species. Frontiers in Zoology, 13, 30.  https://doi.org/10.1186/s12983-016-0162-0.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Sharpe, R. B. (1883). Catalogue of the Birds in the British Museum, Vol. 7. London: British Museum.Google Scholar
  101. Sharpe, R. B. (1879). Catalogue of the Birds in the British Museum (Vol. 4). London: British Museum.Google Scholar
  102. Smith, T. B., Schneider, C. J., & Holder, K. (2001). Refugial isolation versus ecological gradients. Genetica, 112, 383–398.PubMedCrossRefGoogle Scholar
  103. Streby, H. M., Kramer, G. R., Peterson, S. M., Lehman, J. A., Buehler, D. A., & Andersen, D. E. (2015). Tornadic storm avoidance behaviour in breeding songbirds. Current Biology, 25, 98–102.PubMedCrossRefGoogle Scholar
  104. Symonds, M. R. E., & Tattersall, G. J. (2010). Geographical variation in bill size across bird species provides evidence of Allen’s rule. The American Naturalist, 176, 188–197.PubMedCrossRefGoogle Scholar
  105. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetic Analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Tanabe, A. S. (2011). Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Molecular Ecology Resources, 11, 914–921.PubMedCrossRefGoogle Scholar
  107. Thomas, A. L. R. (1997). On the tail of birds—what are the aerodynamic functions of birds’ tails, with their incredible diversity of forms? Bioscience, 47, 215–225.CrossRefGoogle Scholar
  108. Thomas, A. L. R., & Balmford, A. (1995). How natural selection shapes birds’ tails. The American Naturalist, 146, 848–868.CrossRefGoogle Scholar
  109. van Oort, E. D. (1909). Birds from southwestern and southern New Guinea. Nova Guinea. Zoology, 9, 51–107.Google Scholar
  110. van Ufford, A. Q., & Cloos, M. (2005). Cenozoic tectonics of New Guinea. Americam Association of Petroleum Geologists B, 89, 119–140.CrossRefGoogle Scholar
  111. Vigors, N. A., & Horsfield, T. (1827). A description of the Australian birds in the collection of the Linnean Society; with an attempt at arranging them according to their natural affinities. Transactions of the Linnean Society, London, 15, 170–331.CrossRefGoogle Scholar
  112. Voris, H. K. (2000). Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography, 27, 1153–1167.CrossRefGoogle Scholar
  113. Weber, R. E. (2007). High-altitude adaptations in vertebrate hemoglobins. Respiratory Physiology and Neurobiology, 158, 132–142.PubMedCrossRefGoogle Scholar
  114. Wuster, W., Dumbrell, A. J., Hay, C., Pook, C. E., Williams, D. J., & Fry, B. G. (2005). Snakes across the strait: trans-Torresian phylogeographic relationships in three genera of Australasian snakes (Serpentes: Elapidae: Acanthophis, Oxyuranus, and Pseudechis). Molecular Phylogenetics and Evolution, 34, 1–14.PubMedCrossRefGoogle Scholar
  115. Zeffer, A. L., Johansson, C., & Mamembro, A. (2003). Functional correlation between habitat use and leg morphology in birds (Aves). Biological Journal of the Linnean Society, 79, 461–484.CrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2018

Authors and Affiliations

  • Janette A. Norman
    • 1
    • 2
    Email author
  • Les Christidis
    • 1
    • 3
  • Richard Schodde
    • 4
  1. 1.National Marine Science CentreSouthern Cross UniversityLismoreAustralia
  2. 2.Sciences DepartmentMuseum VictoriaCarltonAustralia
  3. 3.School of BioSciencesUniversity of MelbourneParkvilleAustralia
  4. 4.Australian National Wildlife Collection, CSIROCanberraAustralia

Personalised recommendations