Advertisement

Organisms Diversity & Evolution

, Volume 18, Issue 1, pp 71–86 | Cite as

Species tree phylogeny, character evolution, and biogeography of the Patagonian genus Anarthrophyllum Benth. (Fabaceae)

  • Fernanda Achimón
  • Leigh A. Johnson
  • Andrea A. Cocucci
  • Alicia N. Sérsic
  • Matias C. Baranzelli
Original Article

Abstract

Geologic events promoting the aridization of southern South America contributed to lineage divergences and species differentiation through geographic (allopatric divergence) and biotic and abiotic factors (ecological divergence). For the genus Anarthrophyllum, which is distributed in arid and semi-arid regions of Patagonia, we assessed how these factors affected species diversification and reconstructed its possible biogeographic history in South American arid environments. Sequences were obtained from two molecular markers: the ITS nuclear region and the trnS-trnG plastid region. Using Parsimony, Maximum likelihood and Bayesian inference individual gene trees were reconstructed, and a species tree was obtained using multi-species coalescent analysis. Divergence times among species were estimated using secondary calibrations. Flexible Bayesian models and stochastic character mapping were used to elucidate ancestral geographic distributions and the evolution of the floral and vegetative phenotypes in the genus. Gene trees and species tree analyses strongly support Anarthrophyllum as monophyletic; all analyses consistently retrieved three well-supported main clades: High Andean Clade, Patagonian Clade 1, and Patagonian Clade 2. Main diversification events occurred concomitant with the Andean uplift and steppe aridization; the Andean mountain range possibly acted as a species barrier for the High Andean Clade. Vegetative traits showed adaptations to harsh climates in some clades, while pollinator-related floral features were associated with independent diversification in bee- and bird-pollinated clades within both Patagonian Clades. In conclusion, evolutionary and biogeographic history of Anarthrophyllum resulted from the action of ecological, historical, and geographic factors that acted either alternatively or simultaneously.

Keywords

Arid lands Andes Payunia Molecular dating Patagonian steppe Ancestral state reconstruction 

Notes

Acknowledgments

We thank G. Hunzicker for assistance in sample collection. F. A. as a doctoral fellowship holder, M.C.B. as postdoctoral scholarship holder, and A.A.C. and A.N.S. as researchers acknowledge the National Research Council of Argentina (CONICET). This work was supported by the National Research Council of Argentina (PIP 201101-00245; A.N.S.), National Ministry of Science and Technology (FONCYT-PICT-2011-0837; A.N.S.). We are grateful to J. Schwantz for helping us to spot the extremely rare S. paradoxa.

Supplementary material

13127_2017_355_MOESM1_ESM.pdf (101 kb)
Table S1 List of CORD specimens of Anarthrophyllum studied. Data collection and voucher information are also indicated. (PDF 101 kb)

References

  1. Alsos, I. G., Engelskjøn, T., Gielly, L., Taberlet, P., & Brochmann, C. (2005). Impact of ice ages on circumpolar molecular diversity: insights from an ecological key species. Molecular Ecology, 14(9), 2739–2753.CrossRefPubMedGoogle Scholar
  2. Amarilla, L. D., Chiapella, J. O., Sosa, V., Moreno, N. C., & Anton, A. M. (2015). A tale of North and South America: time and mode of dispersal of the amphitropical genus Munroa (Poaceae, Chloridoideae). Botanical Journal of the Linnean Society, 179(1), 110–125.CrossRefGoogle Scholar
  3. Amico, G. C. (2007). Variación geográfica en la coloración de los frutos del muérdago Tristerix corymbosus (Loranthaceae): Efecto de la historia evolutiva, del ambiente, de los dispersores de semillas y de los hospedadores. Doctoral thesis. National University of Comahue.Google Scholar
  4. Baranzelli, M. C., Johnson, L. A., Cosacov, A., & Sérsic, A. N. (2014). Historical and ecological divergence among populations of Monttea chilensis (Plantaginaceae), an endemic endangered shrub bordering the Atacama Desert, Chile. Evolutionary Ecology, 28(4), 751–774.CrossRefGoogle Scholar
  5. Baranzelli, M. C., Cosacov, A., Ferreiro, G., Johnson, L. A., & Sérsic, A. N. (2017). Travelling to the south: phylogeographic spatial diffusion model in Monttea aphylla (Plantaginaceae), an endemic plant of the Monte Desert. PLoS One, 12(6), e0178827.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barker, N. P., Von Senger, I., Howis, S., Zachariades, C., & Ripley, B. S. (2005). Plant phylogeography based on rDNA ITS sequence data: two examples from the Asteraceae. REGNUM VEGETABILE, 143, 217.Google Scholar
  7. Barreda, V., & Palazzesi, L. (2007). Patagonian vegetation turnovers during the Paleogene-early Neogene: origin of arid-adapted floras. The Botanical Review, 73(1), 31–50.CrossRefGoogle Scholar
  8. Barreda, V., Guler, V., & Palazzesi, L. (2008). Late Miocene continental and marine palynological assemblages from Patagonia. Developments in Quaternary Sciences, 11, 343–350.CrossRefGoogle Scholar
  9. Blisniuk, P. M., Stern, L. A., Chamberlain, C. P., Idleman, B., & Zeitler, P. K. (2005). Climatic and ecologic changes during Miocene surface uplift in the Southern Patagonian Andes. Earth and Planetary Science Letters, 230(1), 125–142.CrossRefGoogle Scholar
  10. Cabrera, A., & Willink, A. (1980). Biogeografía de América Latina. Secretaría General de la organización de los Estados Americanos. Serie de Biología. Monografías nro, 13.Google Scholar
  11. Cavieres, L. A., & Peñaloza, A. (1998). Efecto nodriza del cojín Laretia acaulis (Umbelliferae) en la zona alto-andina. Revista Chilena de Historia Natural, 71, 337–347.Google Scholar
  12. Chacón, J., de Assis, M. C., Meerow, A. W., & Renner, S. S. (2012). From east Gondwana to Central America: historical biogeography of the Alstroemeriaceae. Journal of Biogeography, 39(10), 1806–1818.CrossRefGoogle Scholar
  13. Chandler, G. T., Bayer, R. J., & Crisp, M. D. (2001). A molecular phylogeny of the endemic Australian genus Gastrolobium (Fabaceae: Mirbelieae) and allied genera using chloroplast and nuclear markers. American Journal of Botany, 88(9), 1675–1687.CrossRefPubMedGoogle Scholar
  14. Conterato, I. F., Sfoggia Miotto, S. T., & Schifino-Wittmann, M. T. (2007). Chromosome number, karyotype, and taxonomic considerations on the enigmatic Sellocharis paradoxa Taubert (Leguminosae, Papilionoideae, Genisteae). Botanical Journal of the Linnean Society, 155(2), 223–226.CrossRefGoogle Scholar
  15. Cosacov, A., Sérsic, A. N., Sosa, V., De-Nova, J. A., Nylinder, S., & Cocucci, A. A. (2009). New insights into the phylogenetic relationships, character evolution, and phytogeographic patterns of Calceolaria (Calceolariaceae). American Journal of Botany, 96(12), 2240–2255.CrossRefPubMedGoogle Scholar
  16. Cosacov, A., Sérsic, A. N., Sosa, V., Johnson, L. A., & Cocucci, A. A. (2010). Multiple periglacial refugia in the Patagonian steppe and post-glacial colonization of the Andes: the phylogeography of Calceolaria polyrhiza. Journal of Biogeography, 37, 1463–1477.Google Scholar
  17. Cosacov, A., Johnson, L. A., Paiaro, V., Cocucci, A. A., Córdoba, F. E., & Sérsic, A. N. (2013). Precipitation rather than temperature influenced the phylogeography of the endemic shrub Anarthrophyllum desideratum in the Patagonian steppe. Journal of Biogeography, 40, 168–182.CrossRefGoogle Scholar
  18. Cosacov, A., Cocucci, A. A., & Sérsic, A. N. (2014). Geographical differentiation in floral traits across the distribution range of the Patagonian oil-secreting Calceolaria polyrhiza: do pollinators matter? Annals of Botany, 113(2), 251–266.CrossRefPubMedGoogle Scholar
  19. Cronk, Q., & Ojeda, I. (2008). Bird-pollinated flowers in an evolutionary and molecular context. Journal of Experimental Botany, 59(4), 715–727.CrossRefPubMedGoogle Scholar
  20. Cruden, R. W. (1972). Pollinators in high-elevation ecosystems: relative effectiveness of birds and bees. Science, 176(4042), 1439–1440.CrossRefPubMedGoogle Scholar
  21. Currat, M., Ruedi, M., Petit, R. J., & Excoffier, L. (2008). The hidden side of invasions: massive introgression by local genes. Evolution, 62(8), 1908–1920.PubMedGoogle Scholar
  22. Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772–772.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dormer, K. J. (1946). Vegetative morphology as a guide to the classification of the Papilionatae. New Phytologist, 45, 145.CrossRefGoogle Scholar
  24. Doyle, J. J. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem bull, 19, 11–15.Google Scholar
  25. Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1), 214.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ezcurra, C. (2002). Phylogeny, morphology, and biogeography of Chuquiraga, an Andean-Patagonian genus of Asteraceae-Barnadesioideae. The Botanical Review, 68(1), 153–170.CrossRefGoogle Scholar
  27. Ezcurra, E., Montana, C., & Arizaga, S. (1991). Architecture, light interception, and distribution of Larrea species in the Monte Desert, Argentina. Ecology, 72(1), 23–34.CrossRefGoogle Scholar
  28. Ferreiro, G., Baranzelli, M. C., Sérsic, A. N., & Cocucci, A. A. (2015). Clinal variability of oil and nectar rewards in Monttea aphylla (Plantaginaceae): relationships with pollinators and climatic factors in the Monte desert. Botanical Journal of the Linnean Society, 178, 314–328.CrossRefGoogle Scholar
  29. Fountain, D. K. (2008). Phylogenetic and biogeographic analysis of the enigmatic monotypic plant genus Sellocharis Taub, (Papilionoideae -Leguminosae). Undergraduate project. University of Oxford.Google Scholar
  30. Gagnon, E., Hughes, C. E., Lewis, G. P., & Bruneau, A. (2015). A new cryptic species in a new cryptic genus in the Caesalpinia group (Leguminosae) from the seasonally dry inter-Andean valleys of South America. Taxon, 64(3), 468–490.CrossRefGoogle Scholar
  31. Gibbard, P., & Cohen, K. M. (2008). Global chronostratigraphical correlation table for the last 2.7 million years. Episodes, 31(2), 243–247.Google Scholar
  32. Goloboff, P. A., Farris, J. S., & Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics, 24(5), 774–786.CrossRefGoogle Scholar
  33. Guindon, S., Lethiec, F., Duroux, P., & Gascuel, O. (2005). PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Research, 33, 557–559.CrossRefGoogle Scholar
  34. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  35. Hamilton, M. (1999). Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molecular Ecology, 8, 513–525.CrossRefGoogle Scholar
  36. Hartley, A. J., Chong, G., Houston, J., & Mather, A. E. (2005). 150 million years of climatic stability: evidence from the Atacama Desert, northern Chile. Journal of the Geological Society, 162(3), 421–424.CrossRefGoogle Scholar
  37. Heled, J., & Drummond, A. J. (2010). Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution, 27(3), 570–580.CrossRefPubMedGoogle Scholar
  38. Hoorn, C., Wesselingh, F. P., Ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., & Jaramillo, C. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330(6006), 927–931.CrossRefPubMedGoogle Scholar
  39. Houston, J., & Hartley, A. J. (2003). The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. International Journal of Climatology, 23(12), 1453–1464.CrossRefGoogle Scholar
  40. Hughes, C., & Eastwood, R. (2006). Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences, 103(27), 10334–10339.CrossRefGoogle Scholar
  41. Jakob, S. S., Martinez-Meyer, E., & Blattner, F. R. (2009). Phylogeographic analyses and paleodistribution modeling indicate Pleistocene in situ survival of Hordeum species (Poaceae) in southern Patagonia without genetic or spatial restriction. Molecular Biology and Evolution, 26(4), 907–923.CrossRefPubMedGoogle Scholar
  42. Kay, K. M., Whittall, J. B., & Hodges, S. A. (2006). A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects. BMC Evolutionary Biology, 6(1), 36.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Koenen, E. J. M., De Vos, J. M., Atchison, G. W., Simon, M. F., Schrire, B. D., De Souza, E. R., & Hughes, C. E. (2013). Exploring the tempo of species diversification in legumes. South African Journal of Botany, 89, 19–30.CrossRefGoogle Scholar
  44. Labraga, J. C., & Villalba, R. (2009). Climate in the Monte Desert: past trends, present conditions, and future projections. Journal of Arid Environments, 73(2), 154–163.CrossRefGoogle Scholar
  45. Lagomarsino, L. P., Condamine, F. L., Antonelli, A., Mulch, A., & Davis, C. C. (2016). The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytologist, 210(4), 1430–1442.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lavin, M., Herendeen, P. S., & Wojciechowski, M. F. (2005). Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Systematic Biology, 54(4), 575–594.CrossRefPubMedGoogle Scholar
  47. León, R. J., Bran, D., Collantes, M., Paruelo, J. M., & Soriano, A. (1998). Grandes unidades de vegetación de la Patagonia extra andina. Ecología Austral, 8(2), 125–144.Google Scholar
  48. Lewis, G., Schrire, B., Mackinder, B., & Lock, M. (Eds.). (2005). Legumes of the world (vol. 577). Richmond, UK: Royal Botanic Gardens, Kew.Google Scholar
  49. Martínez Carretero, E. (2004). La provincia fitogeográfica de la Payunia. Boletín de la Sociedad Argentina de Botánica, 39(3–4), 195–226.Google Scholar
  50. Martins, A. C., Scherz, M. D., & Renner, S. S. (2014). Several origins of floral oil in the Angelonieae, a southern hemisphere disjunct clade of Plantaginaceae. American Journal of Botany, 101(12), 2113–2120.PubMedGoogle Scholar
  51. Miotto, S. T. S., & Ludtke, R. (2008). A família Leguminosae no Parque Estadual de Itapuã, Viamão, Rio Grande do Sul, Brasil. Revista Brasileira de Biociências, 6(3).Google Scholar
  52. Moré, M., Cocucci, A. A., Sérsic, A. N., & Barboza, G. E. (2015). Phylogeny and floral trait evolution in Jaborosa (Solanaceae). Taxon, 64(3), 523–534.CrossRefGoogle Scholar
  53. Morrone, J. J. (2006). Biogeographic areas and transition zones of Latin America and the Caribbean islands based on panbiogeographic and cladistic analyses of the entomofauna. Annual Review Entomology, 51, 467–494.CrossRefGoogle Scholar
  54. Morrone, J. J. (2015). Biogeographical regionalisation of the Andean region. Zootaxa, 3936(2), 207–236.CrossRefPubMedGoogle Scholar
  55. Muchhala, N. (2003). Exploring the boundary between pollination syndromes: bats and hummingbirds as pollinators of Burmeistera cyclostigmata and B. tenuiflora (Campanulaceae). Oecologia, 134(3), 373–380.CrossRefPubMedGoogle Scholar
  56. Nielsen, R. (2002). Mapping mutations on phylogenies. Systematic Biology, 51, 729–739.CrossRefPubMedGoogle Scholar
  57. Nosil, P. (2012). Ecological speciation. Oxford University Press.Google Scholar
  58. Oliva, G., González, L., Rial, P., & Livraghi, E. (2001). Áreas ecológicas de Santa Cruz y tierra del Fuego. Ganadería ovina sustentable en la Patagonia Austral, 41–62.Google Scholar
  59. Ortiz-Jaureguizar, E., & Cladera, G. A. (2006). Paleoenvironmental evolution of southern South America during the Cenozoic. Journal of Arid Environments, 66, 498–532.CrossRefGoogle Scholar
  60. Paiaro, V. (2010). Gradientes ambientales y márgenes de distribución: patrones espaciales de variabilidad fenotípica, atributos poblacionales y caracteres reproductivos en Anarthrophyllum desideratum (dc) benth. Doctoral Thesis. National University of Córdoba.Google Scholar
  61. Paiaro, V., Oliva, G. E., Cocucci, A. A., & Sérsic, A. N. (2012a). Caracterización y variación espacio-temporal del néctar en anarthrophyllum desideratum (Fabaceae): Influencia del clima y los polinizadores. Boletín de la Sociedad Argentina de Botánica, 47(3–4), 375–387.Google Scholar
  62. Paiaro, V., Oliva, G. E., Cocucci, A. A., & Sérsic, A. N. (2012b). Geographic patterns and environmental drivers of flower and leaf variation in an endemic legume of southern Patagonia. Plant Ecology & Diversity, 5(1), 13–25.CrossRefGoogle Scholar
  63. Palmer, J. D. (1991). Plastid chromosomes: structure and evolution. The molecular biology of plastids, 7, 5–53.CrossRefGoogle Scholar
  64. Rabassa, J. (2008). Late Cenozoic glaciations in Patagonia and Tierra del Fuego. Developments in quaternary sciences, 11, 151–204.CrossRefGoogle Scholar
  65. Rambaut, A., & Drummond, A. (2008). FigTree: tree figure drawing tool, version 1.2. 2. Institute of Evolutionary Biology, University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree
  66. Rambaut, A., & Drummond, A. J. (2009). Tracer v1.5.0. Available at: http://beast.bio.ed.ac.uk/Tracer.
  67. Ramos, V. A., & Ghiglione, M. C. (2008). Tectonic evolution of the Patagonian Andes. Developments in Quaternary Sciences, 11, 57–71.CrossRefGoogle Scholar
  68. Ramos, M. E., Folguera, A., Fennell, L., Giménez, M., Litvak, V. D., Dzierma, Y., & Ramos, V. A. (2014). Tectonic evolution of the North Patagonian Andes from field and gravity data (39–40 S). Journal of South American Earth Sciences, 51, 59–75.CrossRefGoogle Scholar
  69. Revell, L. J. (2012). Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217–223.CrossRefGoogle Scholar
  70. Revell, L. J. (2014). Ancestral character estimation under the threshold model from quantitative genetics. Evolution, 68(3), 743–759.CrossRefPubMedGoogle Scholar
  71. Roig, F. A., Roig-Juñent, S., & Corbalán, V. (2009). Biogeography of the Monte desert. Journal of Arid Environments, 73(2), 164–172.CrossRefGoogle Scholar
  72. Roig-Juñent, S., Carrara, R., Ruiz-Manzanos, E., Agrain, F., Sackmann, P., & Tognelli, M. F. (2007). Phylogenetic relationships and biogeographic considerations of four new species of Cnemalobus (Coleoptera: Carabidae) from Patagonia. Insect Systematics & Evolution, 38(3), 267–292.CrossRefGoogle Scholar
  73. Roig-Juñent, S., Tognelli, M. F., & Morrone, J. J. (2008). Aspectos biogeográficos de los insectos de la Argentina. Biodiversidad de artrópodos argentinos, 2, 11–29.Google Scholar
  74. Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572–1574.CrossRefPubMedGoogle Scholar
  75. Rozzi, R., Arroyo, M. K., & Armesto, J. J. (1997). Ecological factors affecting gene flow between populations of Anarthrophyllum cumingii (Papilionaceae) growing on equatorial-and polar-facing slopes in the Andes of Central Chile. Plant Ecology, 132(2), 171–179.CrossRefGoogle Scholar
  76. Ruthsatz, B. (1978). Las plantas en cojín de los semi-desiertos andinos del Noroeste Argentino: Su distribución local como adaptación a los factores climáticos, edáficos y antopogénicos de sus ambientes. Darwin, 491–539.Google Scholar
  77. Särkinen, T., Pennington, R. T., Lavin, M., Simon, M. F., & Hughes, C. E. (2012). Evolutionary islands in the Andes: persistence and isolation explain high endemism in Andean dry tropical forests. Journal of Biogeography, 39(5), 884–900.CrossRefGoogle Scholar
  78. Sarmiento, G. (1975). The dry plant formations of South America and their floristic connections. Journal of Biogeography, 233–251.Google Scholar
  79. Schemske, D. W., & Bradshaw, H. D. (1999). Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proceedings of the National Academy of Sciences, 96(21), 11910–11915.CrossRefGoogle Scholar
  80. Sede, S. M., Nicola, M. V., Pozner, R., & Johnson, L. A. (2012). Phylogeography and palaeodistribution modelling in the Patagonian steppe: the case of Mulinum spinosum (Apiaceae). Journal of Biogeography, 39(6), 1041–1057.CrossRefGoogle Scholar
  81. Simmons, M. P., & Ochoterena, H. (2000). Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology, 49(2), 369–381.CrossRefPubMedGoogle Scholar
  82. Snak, C., Vatanparast, M., Silva, C., Lewis, G. P., Lavin, M., Kajita, T., & de Queiroz, L. P. (2016). A dated phylogeny of the papilionoid legume genus Canavalia reveals recent diversification by a pantropical liana lineage. Molecular Phylogenetics and Evolution, 98, 133–146.CrossRefPubMedGoogle Scholar
  83. Sorarú, S. B. (1974). Revisión de Anarthrophyllum, género argentino-chileno de Leguminosas. Darwin, 18(3/4), 453–488.Google Scholar
  84. Streisfeld, M. A., & Kohn, J. R. (2007). Environment and pollinator-mediated selection on parapatric floral races of Mimulus aurantiacus. Journal of Evolutionary Biology, 20(1), 122–132.CrossRefPubMedGoogle Scholar
  85. Terra-Araujo, M. H., de Faria, A. D., Vicentini, A., Nylinder, S., & Swenson, U. (2015). Species tree phylogeny and biogeography of the Neotropical genus Pradosia (Sapotaceae, Chrysophylloideae). Molecular Phylogenetics and Evolution, 87, 1–13.CrossRefPubMedGoogle Scholar
  86. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Thomson, J. D., & Wilson, P. (2008). Explaining evolutionary shifts between bee and hummingbird pollination: convergence, divergence, and directionality. International Journal of Plant Sciences, 169(1), 23–38.CrossRefGoogle Scholar
  88. Thulin, M., & Lavin, M. (2001). Phylogeny and biogeography of the Ormocarpum group (Fabaceae): a new genus Zygocarpum from the Horn of Africa region. Systematic Botany, 26(2), 299–317.Google Scholar
  89. van der Niet, T., & Johnson, S. D. (2012). Phylogenetic evidence for pollinator-driven diversification of angiosperms. Trends in Ecology & Evolution, 27(6), 353–361.CrossRefGoogle Scholar
  90. Villagrán, C., & Hinojosa, L. F. (1997). Historia de los bosques del sur de Sudamérica, II: Análisis fitogeográfico. Revista Chilena de Historia Natural, 70(2), 1–267.Google Scholar
  91. Wojciechowski, M. F., Lavin, M., & Sanderson, M. J. (2004). A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. American Journal of Botany, 91(11), 1846–1862.CrossRefPubMedGoogle Scholar
  92. Yu, Y., Harris, A. J., & He, X. J. (2010). S-DIVA (statistical dispersal-vicariance analysis): a tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution, 56(2), 848–850.CrossRefPubMedGoogle Scholar
  93. Yu, Y., Harris, A. J., Blair, C., & He, X. (2015). RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution, 87, 46–49.CrossRefPubMedGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2018

Authors and Affiliations

  • Fernanda Achimón
    • 1
  • Leigh A. Johnson
    • 2
  • Andrea A. Cocucci
    • 3
  • Alicia N. Sérsic
    • 3
  • Matias C. Baranzelli
    • 3
  1. 1.Laboratorio de Fitoquímica - FCEFyN - Instituto Multidisciplinario de Biología Vegetal (IMBIV)CONICET-Universidad Nacional de CórdobaCórdobaArgentina
  2. 2.Department of Biology and M. L. Bean Life Science MuseumBrigham Young UniversityProvoUSA
  3. 3.Laboratorio de Ecología Evolutiva - Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV)CONICET-Universidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations