Advertisement

Organisms Diversity & Evolution

, Volume 18, Issue 1, pp 143–150 | Cite as

Phylogeography of the Ibero-Maghrebian red-eyed grass snake (Natrix astreptophora)

  • Carolin Kindler
  • Philip de Pous
  • Salvador Carranza
  • Menad Beddek
  • Philippe Geniez
  • Uwe FritzEmail author
Original Article

Abstract

We examined phylogeographic differentiation of the red-eyed grass snake (Natrix astreptophora) using 1984 bp of mtDNA and 13 microsatellite loci from specimens collected across its distribution range in southwestern Europe and northwestern Africa. Based on phylogenetic analyses of mtDNA, European N. astreptophora constituted the sister clade to a weakly supported North African clade comprised of two deeply divergent and well-supported clades, one corresponding to Moroccan snakes and the other to snakes from Algeria and Tunisia. This tripartite differentiation was confirmed by analyses of microsatellite loci. According to a fossil-calibrated molecular clock, European and North African N. astreptophora diverged 5.44 million years ago (mya), and the two Maghrebian clades split 4.64 mya. These dates suggest that the radiation of the three clades was initiated by the environmental changes related to the Messinian Salinity Crisis and the reflooding of the Mediterranean Basin. The differentiation of N. astreptophora, with distinct clades in the Iberian Peninsula and in the western and eastern Maghreb, corresponds to a general phylogeographic paradigm and resembles the differentiation found in another co-distributed Natrix species, the viperine snake (N. maura). Despite both species being good swimmers, the Strait of Gibraltar constitutes a significant biogeographic barrier for them. The discovery that North Africa harbours two endemic lineages of N. astreptophora necessitates more conservation efforts for these imperilled snakes.

Keywords

Biogeography North Africa Messinian Salinity Crisis Reptile Southwest Europe 

Notes

Acknowledgements

Markus Auer, José Carlos Brito, Pierre-André Crochet, Boualem Dellaoui, Marco Favelli, Daniel Jablonski, Jérôme Maran, Olivier Peyre, and Ulrich Scheidt donated samples. Philippe Evrard provided a photo of a red-eyed grass snake from Spain. Cäcilia Spitzweg helped with laboratory work.

Funding information

This study was funded by the German Research Foundation (DFG; FR 1435/11-2). Menad Beddek’s PhD research was supported by a grant from ANRT/Naturalia Environnement CIFRE (no. 2013/0145); field work in Algeria was funded by Naturalia Environnement. Salvador Carranza’s work was funded by CGL2015-70390-P from the Ministerio de Economía y Competitividad, Spain (cofunded by FEDER).

Supplementary material

13127_2017_354_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1.24 mb).

References

  1. Barata, M., Harris, D. J., & Castilho, R. (2008). Comparative phylogeography of northwest African Natrix maura (Serpentes: Colubridae) inferred from mtDNA sequences. African Zoology, 43, 1–7.CrossRefGoogle Scholar
  2. Blouin-Demers, G., & Gibbs, H. L. (2003). Isolation and characterization of microsatellite loci in the black rat snake (Elaphe obsoleta). Molecular Ecology Notes, 3, 98–99.CrossRefGoogle Scholar
  3. Bons, J., & Geniez, P. (1996). Amphibiens et reptiles du Maroc (Sahara Occidental compris). Atlas biogéographique. Barcelona: AHE.Google Scholar
  4. Burns, E. L., & Houlden, B. A. (1999). Isolation and characterization of microsatellite markers in the broad-headed snake Hoplocephalus bungaroides. Molecular Ecology, 8, 520–521.Google Scholar
  5. Carranza, S., Arnold, E. N., Wade, E., & Fahd, S. (2004). Phylogeography of the false smooth snakes, Macroprotodon (Serpentes, Colubridae): mitochondrial DNA sequences show European populations arrived recently from Northwest Africa. Molecular Phylogenetics and Evolution, 33, 523–532.CrossRefPubMedGoogle Scholar
  6. Carranza, S., Arnold, E. N., & Pleguezuelos, J. M. (2006). Phylogeny, biogeography, and evolution of two Mediterranean snakes, Malpolon monspessulanus and Hemorrhois hippocrepis (Squamata, Colubridae), using mtDNA sequences. Molecular Phylogenetics and Evolution, 40, 532–546.CrossRefPubMedGoogle Scholar
  7. Clement, M., Posada, D., & Crandall, K. A. (2000). tcs: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1660.CrossRefPubMedGoogle Scholar
  8. Delfino, M., Bailon, S., & Pitruzella, G. (2011). The Late Pliocene amphibians and reptiles from “Capo Mannu D1 Local Fauna” (Mandriola, Sardinia, Italy). Geodiversitas, 33, 357–382.CrossRefGoogle Scholar
  9. Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with beauti and the beast 1.7. Molecular Biology and Evolution, 29, 1969–1973.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Excoffier, L., & Lischer, H. E. L. (2010). arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564–567.CrossRefPubMedGoogle Scholar
  11. Fritz, U., Barata, M., Busack, S. D., Fritzsch, G., & Castilho, R. (2006). Impact of mountain chains, sea straits and peripheral populations on genetic and taxonomic structure of a freshwater turtle, Mauremys leprosa. Zoologica Scripta, 35, 97–108.CrossRefGoogle Scholar
  12. Fritz, U., Corti, C., & Päckert, M. (2012). Mitochondrial DNA sequences suggest unexpected phylogenetic position of Corso-Sardinian grass snakes (Natrix cetti) and do not support their species status, with notes on phylogeography and subspecies delineation of grass snakes. Organisms, Diversity & Evolution, 12, 71–80.CrossRefGoogle Scholar
  13. Garner, T. W. J., Gregory, P. T., McCracken, G. F., Burghardt, G. M., Koop, B. F., McLain, S. E., & Nelson, R. J. (2002). Geographic variation of multiple paternity in the common garter snake (Thamnophis sirtalis). Copeia, 2002, 15–23.CrossRefGoogle Scholar
  14. Gautschi, B., Widmer, A., & Koella, J. (2000). Isolation and characterization of microsatellite loci in the dice snake (Natrix tessellata). Molecular Ecology, 9, 2192–2193.CrossRefGoogle Scholar
  15. Guicking, D., Lawson, R., Joger, U., & Wink, M. (2006). Evolution and phylogeny of the genus Natrix (Serpentes: Colubridae). Biological Journal of the Linnean Society, 87, 127–143.CrossRefGoogle Scholar
  16. Guicking, D., Joger, U., & Wink, M. (2008). Molecular phylogeography of the viperine snake Natrix maura (Serpentes: Colubridae): evidence for strong intraspecific differentiation. Organisms, Diversity & Evolution, 8, 130–145.CrossRefGoogle Scholar
  17. Hecht, G. (1930). Systematik, Ausbreitungsgeschichte und Ökologie der europäischen Arten der Gattung Tropidonotus (Kuhl) H. Boie. Mitteilungen aus dem Zoologischen Museum Berlin, 16, 244–393.Google Scholar
  18. Husemann, M., Schmitt, T., Zachos, F. E., Ulrich, W., & Habel, J. C. (2014). Palaearctic biogeography revisited: evidence for the existence of a north African refugium for Western Palaearctic biota. Journal of Biogeography, 41, 81–94.CrossRefGoogle Scholar
  19. Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24, 1403–1405.CrossRefPubMedGoogle Scholar
  20. Kabisch, K. (1999). Natrix natrix (Linnaeus, 1758) – Ringelnatter. In W. Böhme (Ed.), Handbuch der Reptilien und Amphibien Europas. Band 3/IIA: Schlangen II (pp. 513–580). Aula: Wiebelsheim.Google Scholar
  21. Kindler, C., Böhme, W., Corti, C., Gvoždík, V., Jablonski, D., Jandzik, D., Metallinou, M., Široký, P., & Fritz, U. (2013). Mitochondrial phylogeography, contact zones and taxonomy of grass snakes (Natrix natrix, N. megalocephala). Zoologica Scripta, 42, 458–472.CrossRefGoogle Scholar
  22. Kindler, C., Chèvre, M., Ursenbacher, S., Böhme, W., Hille, A., Jablonski, D., Vamberger, M., & Fritz, U. (2017). Hybridization patterns in two contact zones of grass snakes reveal a new Central European snake species. Scientific Reports, 7, 7378.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kumar, S., Stecher, G., & Tamura, K. (2016). mega7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.CrossRefPubMedGoogle Scholar
  24. Lacepède, B.-G.-É. (1789). Histoire naturelle des quadrupèdes ovipares et des serpens, vol. 2 (Histoire naturelle des serpens). Paris: Hôtel de Thou.Google Scholar
  25. Lanfear, R., Calcott, B., Ho, S. Y. W., & Guindon, S. (2012). partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701.CrossRefPubMedGoogle Scholar
  26. Linnaeus, C. (1758). Systema Naturae per regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis. Tomus I. Regnum Animale. Editio Decima. Stockholm: Laurentius Salvius.Google Scholar
  27. Martínez-Freiría, F., Crochet, P.-A., Fahd, S., Geniez, P., Brito, J. C., & Velo-Antón, G. (2017). Integrative phylogeographic and ecological analyses reveal multiple Pleistocene refugia for Mediterranean Daboia vipers in north-west Africa. Biological Journal of the Linnean Society, 122, 366–384.CrossRefGoogle Scholar
  28. Meister, B., Armbruster, F. J., Frauenfelder, N., & Bauer, B. (2009). Novel microsatellite loci in the grass snake (Natrix natrix) and cross-amplification in the dice snake (Natrix tessellata). Molecular Ecology Resources, 9, 604–606.CrossRefPubMedGoogle Scholar
  29. Nicolas, V., Mataame, A., Crochet, P.-A., Geniez, P., & Ohler, A. (2015). Phylogeographic patterns in North African water frog Pelophylax saharicus (Anura: Ranidae). Journal of Zoological Systematics and Evolutionary Research, 53, 239–248.CrossRefGoogle Scholar
  30. Pokrant, F., Kindler, C., Ivanov, M., Cheylan, M., Geniez, P., Böhme, W., & Fritz, U. (2016). Integrative taxonomy provides evidence for the species status of the Ibero-Maghrebian grass snake Natrix astreptophora. Biological Journal of the Linnean Society, 118, 873–888.CrossRefGoogle Scholar
  31. Prosser, M. R., Gibbs, H. L., & Weatherhead, P. J. (1999). Microgeographic population genetic structure in the northern water snake, Nerodia sipedon sipedon detected using microsatellite DNA loci. Molecular Ecology, 8, 329–333.CrossRefPubMedGoogle Scholar
  32. Recuero, E., Iraola, A., Rubio, X., Machordom, A., & García-Paris, M. (2007). Mitochondrial differentiation and biogeography of Hyla meridionalis (Anura: Hylidae): an unusual phylogeographical pattern. Journal of Biogeography, 34, 1207–1219.CrossRefGoogle Scholar
  33. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). mrbayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Roveri, M., Flecker, R., Krijgsman, W., Lofi, J., Lugli, S., Manzi, V., Sierro, F. J., Bertini, A., Camerlenghi, A., De Lange, G., & Govers, R. (2014). The Messinian Salinity Crisis: past and future of a great challenge for marine sciences. Marine Geology, 352, 25–58.CrossRefGoogle Scholar
  35. Santos, X., Rato, C., Carranza, S., Carretero, M. A., & Pleguezuelos, J. M. (2012). Complex phylogeography in the southern smooth snake (Coronella girondica) supported by mtDNA sequences. Journal of Zoological Systematics and Evolutionary Research, 50, 210–219.CrossRefGoogle Scholar
  36. Schleich, H. H., Kästle, W., & Kabisch, K. (1996). Amphibians and reptiles of North Africa. Königstein: Koeltz Scientific Publishers.Google Scholar
  37. Seoane, V. L. (1884). Identidad de Lacerta schreiberi (Bedriaga) y Lacerta viridis var. gadovi (Boulenger) e investigaciones herpetológicas de Galicia. A Coruña: Vicente Abad.Google Scholar
  38. Sindaco, R., Venchi, A., & Grieco, C. (2013). The reptiles of the Western Palearctic, volume 2: Annotated checklist and distributional atlas of the snakes of Europe, North Africa, Middle East and Central Asia, with an update to volume 1. Latina: Edizioni Belvedere.Google Scholar
  39. Sloss, B. L., Schuurman, G. W., Paloski, R. A., Boyle, O. D., & Kapfer, J. M. (2012). Novel microsatellite loci for studies of Thamnophis gartersnake genetic identity and hybridization. Conservation Genetics Resources, 4, 383–386.CrossRefGoogle Scholar
  40. Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Stuckas, H., Velo-Antón, G., Fahd, S., Kalboussi, M., Rouag, R., Arculeo, M., Marrone, F., Sacco, F., Vamberger, M., & Fritz, U. (2014). Where are you from, stranger? The enigmatic biogeography of North African pond turtles (Emys orbicularis). Organisms, Diversity & Evolution, 14, 295–306.CrossRefGoogle Scholar
  42. Veith, M., Mayer, C., Samraoui, B., Donaire Barroso, D., & Bogaerts, S. (2004). From Europe to Africa and vice versa: evidence for multiple intercontinental dispersal in ribbed salamanders (genus Pleurodeles). Journal of Biogeography, 31, 159–171.CrossRefGoogle Scholar
  43. Velo-Antón, G., Godinho, R., Harris, D. J., Santos, F., Martínez-Freiría, F., Fahd, S., Larbes, S., Pleguezuelos, J. M., & Brito, J. C. (2012). Deep evolutionary lineages in a Western Mediterranean snake (Vipera latastei/monticola group) and high genetic structuring in Southern Iberian populations. Molecular Phylogenetics and Evolution, 65, 965–973.CrossRefPubMedGoogle Scholar
  44. Velo-Antón, G., Pereira, P., Fahd, S., Teixeira, J., & Fritz, U. (2015). Out of Africa: did Emys orbicularis occidentalis cross the Strait of Gibraltar twice? Amphibia-Reptilia, 36, 133–140.CrossRefGoogle Scholar
  45. Veríssimo, J., Znari, M., Stuckas, H., Fritz, U., Pereira, P., Teixeira, J., Arculeo, M., Marrone, F., Sacco, F., Naimi, M., Kehlmaier, C., & Velo-Antón, G. (2016). Pleistocene diversification in Morocco and recent demographic expansion in the Mediterranean pond turtle Mauremys leprosa. Biological Journal of the Linnean Society, 119, 943–959.CrossRefGoogle Scholar
  46. Zazo, C. (1999). Interglacial sea levels. Quaternary International, 55, 101–113.CrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2017

Authors and Affiliations

  1. 1.Museum of Zoology (Museum für Tierkunde)DresdenGermany
  2. 2.Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra)BarcelonaSpain
  3. 3.Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
  4. 4.Centre d’Ecologie Fonctionnelle et Evolutive – UMR 5175, CNRSMontpellier Cedex 5France
  5. 5.Naturalia EnvironnementBaillarguesFrance
  6. 6.Centre d’Ecologie Fonctionnelle et Evolutive – UMR 5175, Ecole Pratique des Hautes EtudesPSL Research UniversityMontpellier Cedex 5France

Personalised recommendations