Advertisement

Organisms Diversity & Evolution

, Volume 18, Issue 1, pp 13–27 | Cite as

Diel behavior in moths and butterflies: a synthesis of data illuminates the evolution of temporal activity

  • Akito Y. Kawahara
  • David Plotkin
  • Chris A. Hamilton
  • Harlan Gough
  • Ryan St Laurent
  • Hannah L. Owens
  • Nicholas T. Homziak
  • Jesse R. Barber
Review

Abstract

Lepidoptera (butterflies and moths) are one of the most taxonomically diverse insect orders with nearly 160,000 described species. They have been studied extensively for centuries and are found on nearly all continents and in many environments. It is often assumed that adult butterflies are strictly diurnal and adult moths are strictly nocturnal, but there are many exceptions. Despite the broad interest in butterflies and moths, a comprehensive review of diel (day-night) activity has not been conducted. Here, we synthesize existing data on diel activity in Lepidoptera, trace its evolutionary history on a phylogeny, and show where gaps lie in our knowledge. Diurnality was likely the ancestral condition in Lepidoptera, the ancestral heteroneuran was likely nocturnal, and more than 40 transitions to diurnality subsequently occurred. Using species diversity estimates across the order, we predict that roughly 75-85% of Lepidoptera are nocturnal. We also define the three frequently used terms for activity in animals (diurnal, nocturnal, crepuscular), and show that literature on the activity of micro-moths is significantly lacking. Ecological factors leading to nocturnality/diurnality is a compelling area of research and should be the focus of future studies.

Keywords

Crepuscular Day-flying Diurnal Flight time Lepidoptera Night-flying Nocturnal 

Notes

Acknowledgements

We thank James K. Adams, Evan Braswell, Charles V. Covell Jr., Jurate De Prins, James E. Hayden, Chris Johns, Ian Kitching, Shigeki Kobayashi, Sei Maruyama, Deborah Matthews, Erik van Nieukerken, Richard Peigler, Rodolphe Rougerie, Andrei Sourakov, Emmanuel Toussaint, Andrew Warren, Andreas Zwick, and an anonymous reviewer for insightful comments. Photographs in Fig. 1 were taken by Patrick Clement, Gail Hampshire, Donald Hobern, Pavel Kirilov, Carla Kishinami, Jürgen Magelsdorf, Ronnie Pitman, Lary Reeves, Line Sabroe, Alan Schmierer, Ken-ichi Ueda, Alexey Yakovlev, and Mark Yokoyama.

Funding information

This study was funded by NSF DEB grant numbers 1541500 and 1557007 to AYK, NSF IOS-1121739 and IOS-1121807 to AYK and JRB, and NSF PRFB-1612862 to CAH.

Supplementary material

13127_2017_350_MOESM1_ESM.pdf (441 kb)
Fig. S1 Ancestral state reconstruction of diel activity in adult Lepidoptera, based on a make.simmap analysis in ‘phytools’. The phylogeny was inferred using a ‘nt123_partitioned’ Regier et al. (2013) dataset with a backbone constraint composed of Kawahara and Breinholt (2014) and Bazinet et al. (2017). Nodes correspond to the posterior probabilities of a state with over 10,000 simulations. Colors: black = nocturnal, blue = crepuscular, orange = diurnal, gray = all. Branches are colored according to their character state and where along the branch transitions likely occurred. (PDF 440 kb)
13127_2017_350_MOESM2_ESM.pdf (457 kb)
Fig. S2 Ancestral state reconstruction of diel activity in adult Lepidoptera, based on a make.simmap analysis in ‘phytools’. The phylogeny was inferred using the ‘nt123’ Regier et al. (2013) dataset with a backbone constraint composed of Kawahara and Breinholt (2014) and Bazinet et al. (2017). Nodes correspond to the posterior probabilities of a state with over 10,000 simulations. Colors: black = nocturnal, blue = crepuscular, orange = diurnal, gray = all. Branches are colored according to their character state and where along the branch transitions likely occurred. (PDF 456 kb)
13127_2017_350_MOESM3_ESM.pdf (444 kb)
Fig. S3 Ancestral state reconstruction of diel activity in adult Lepidoptera, based on a make.simmap analysis in ‘phytools’. The phylogeny was inferred using the ‘nt123_degen1’ Regier et al. (2013) dataset with a backbone constraint composed of Kawahara and Breinholt (2014) and Bazinet et al. (2017). Nodes correspond to the posterior probabilities of a state with over 10,000 simulations. Colors: black = nocturnal, blue = crepuscular, orange = diurnal, gray = all. Branches are colored according to their character state and where along the branch transitions likely occurred. (PDF 444 kb)
13127_2017_350_MOESM4_ESM.pdf (23 kb)
Fig. S4 Character states mapped for each tip of the phylogeny, using a ‘nt123_partitioned’ Regier et al. (2013) dataset and the Kawahara and Breinholt (2014) and Bazinet et al. (2017) chimaera topological constraint. Colors: black = nocturnal, blue = crepuscular, orange = diurnal, gray = all. (PDF 23 kb)
13127_2017_350_MOESM5_ESM.xlsx (90 kb)
Table S1 Compilation of diel activity times of adult Lepidoptera. Taxonomic information in Columns A-F is taken directly from the Regier et al. (2013) dataset, and in a few instances does not reflect more recent taxonomic changes. Column G contains the species’ code names used as tip labels on the phylogeny in Fig. S1. In situations where diel activity was unavailable for a particular species, the citations listed in Column H correspond to diel activity for a higher-level taxon containing that species, as indicated in Column J. (XLSX 90 kb)
13127_2017_350_MOESM6_ESM.xlsx (43 kb)
Table S2 Attributions for Lepidoptera images used in Fig. 1. (XLSX 42 kb)
13127_2017_350_MOESM7_ESM.txt (19 kb)
Table S3 Character state matrix used in ancestral state reconstructions. (TXT 19 kb)
13127_2017_350_MOESM8_ESM.xlsx (48 kb)
Table S4 Diel probabilities of selected higher monophyletic lepidopteran groups. Values are probabilities generated in SIMMAP on the “nt123_partitioned” dataset. (XLSX 48 kb)
13127_2017_350_MOESM9_ESM.tre (1 kb)
ESM 1 Supp. Tree 1. Kawahara and Breinholt (2014) and Bazinet et al. (2017) backbone tree used as a topological constraint in the present study. (TRE 1023 bytes)
13127_2017_350_MOESM10_ESM.tre (33 kb)
ESM 2 Supp. Tree 2. ML tree file using the original Regier et al. (2013) ‘nt123_partitioned’ dataset with topological constraints mentioned in the methods. The dataset was partitioned by site. (TRE 32 kb)
13127_2017_350_MOESM11_ESM.tre (33 kb)
ESM 3 Supp. Tree 3. ML tree file built from the original Regier et al. (2013) ‘nt123’ dataset with topological constraints mentioned in the methods. (TRE 32 kb)
13127_2017_350_MOESM12_ESM.tre (33 kb)
ESM 4 Supp. Tree 4. ML tree file built from the original Regier et al. (2013) ‘nt123_degen1’ dataset with topological constraints mentioned in the methods. (TRE 32 kb)

References

  1. Barber, J.R., & Conner, W.E. (2007). Acoustic mimicry in a predator-prey interaction. Proceedings of the National Academy of Sciences USA, 104(22) 9331–9334.  https://doi.org/10.1073/pnas.0703627104.
  2. Barber, J.R., & Kawahara, A.Y. (2013). Hawkmoths produce anti-bat ultrasound. Biology Letters, 9, 20130161.  https://doi.org/10.0474/rsbl.2013.0161
  3. Bazinet, A.L., Cummings, M.P., Mitter, K.T., & Mitter, C. W. (2013). Can RNA-Seq resolve the rapid radiation of advanced moths and butterflies (Hexapoda: Lepidoptera: Apoditrysia)? An exploratory study. PLOS ONE, 8(12), e82615.  https://doi.org/10.1371/journal.pone.0082615.
  4. Bazinet, A.L., Mitter, K.T., Davis, D.R., Nieukerken, E.J., Cummings, M.P., & Mitter, C. (2017). Phylotranscriptomics resolves ancient divergences in the Lepidoptera. Systematic Entomology, 42(2), 305–316.  https://doi.org/10.1111/syen.12217.
  5. Beadle, D., & Leckie, S. (2012). Peterson field guide to moths of northeastern North America. Boston: Harcourt.Google Scholar
  6. Beck, J., & Linsenmair, K.E. (2006). Feasibility of light-trapping in community research on moths: attraction radius of light, completeness of samples, nightly flight times and seasonality of Southeast-Asian hawkmoths (Lepidoptera: Sphingidae). Journal of Research on the Lepidoptera, 39, 18–37.Google Scholar
  7. Berger, D., & Gotthard, K. (2008). Time stress, predation risk and diurnal–nocturnal foraging trade-offs in larval prey. Behavioral Ecology and Sociobiology, 62(10), 1655–1663.CrossRefGoogle Scholar
  8. Blest, A.D. (1964). Protective display and sound production in some New World arctiid and ctenuchid moths. Zoologica, 49, 161–181.Google Scholar
  9. Bollback, J.P. (2006). SIMMAP: Stochastic character mapping of discrete traits on phylogenies. Bioinformatics, 7:88.  https://doi.org/10.1186/1471-2105-7-88.
  10. Braby, M.F. (2015). New larval food plant associations for some butterflies and diurnal moths (Lepidoptera) from the Northern Territory and Kimberley. Australia. Part II. Records of the Western Australian Museum, 30(2), 73–97.CrossRefGoogle Scholar
  11. Brown, J.W. (1990). The early stages of Doa dora Neumoegen and Dyar (Lepidoptera: Noctuoidea: Doidae) in Baja California, Mexico. Journal of Research on the Lepidoptera, 28, 26–36.Google Scholar
  12. Budashkin, Y.I., & Gaedike, R. (2005). Faunistics of the Epermeniidae from the former USSR (Epermediidae). Nota Lepidopterologica, 28(2), 123–138.Google Scholar
  13. Cho, S., Zwick, A., Regier, J.C., Mitter, C., Cummings, M.P., Yao, J., et al. (2011). Can deliberately incomplete gene sample augmentation improve a phylogeny estimate for the advanced moths and butterflies (Hexapoda: Lepidoptera)? Systematic Biology, 60(6), 782–796.  https://doi.org/10.1093/sysbio/syr079.
  14. Comeau, A., Cardé, R., & Roelofs, W. (1976). Relationship of ambient temperatures to diel periodicities of sex attraction in six species of Lepidoptera. The Canadian Entomologist, 108(04), 415–418.CrossRefGoogle Scholar
  15. Common, I.F.B. (1970). Lepidoptera (moths and butterflies). In I.M. Mackerras (Ed.), The insects of Australia. (pp. 765–866). Melbourne: Melbourne University Press.Google Scholar
  16. Common, I.F.B. (1990). Moths of Australia. Carlton. Melbourne: University Press.Google Scholar
  17. Covell, C.V. (2005). A field guide to the moths of eastern North America. Martinsville: Virginia Museum of Natural History.Google Scholar
  18. Cowan, T., & Gries, G. (2009). Ultraviolet and violet light: attractive orientation cues for the Indian meal moth, Plodia interpunctella. Entomologia Experimentalis et Applicata, 131(2), 148–158.CrossRefGoogle Scholar
  19. Davis, D.R. (1969). A revision of the American moths of the family Carposinidae (Lepidoptera: Carposinoidea). Bulletin United States National Museum, 289, 1–105.Google Scholar
  20. Davis, D.R. (1986). A new family of Monotrysian moths from Austral South America (Lepidoptera: Palaephatidae), with a phylogenetic review of the Monotrysia. Smithsonian Contributions to Zoology (434). Washington DC: Smithsonian Institution Press.Google Scholar
  21. Davis, D.R. (1989). Generic revision of the Opostegidae, with a synoptic catalog of the world's species (Lepidoptera: Nepticuloidea). Smithsonian Contributions to Zoology (478). Washington DC: Smithsonian Institution Press.Google Scholar
  22. Davis, D.R. (1990). Neotropical microlepidoptera. XXIII: First report of the family Eriocottidae from the new world, with descriptions of new taxa. Proceedings of the Entomological Society of Washington, 92, 1–35.Google Scholar
  23. Davis, D.R. (2001). A new species of Prototheora from Malawi, with additional notes on the distribution and morphology of the genus (Lepidoptera: Prototheoridae). Proceedings of the Entomological Society of Washington, 103(2), 452–452.Google Scholar
  24. Davis, D.R., & Stonis, R. (2007). A revision of the New World plant-mining moths of the family Opostegidae (Lepidoptera: Nepticuloidea). Smithsonian Contributions to Zoology (625). Washington DC: Smithsonian Institution Press.Google Scholar
  25. De Prins, J., & De Prins, W. (2017). Global Taxonomic Database of Gracillariidae (Lepidoptera). World Wide Web electronic publication (http://www.gracillariidae.net/). Accessed 16 Jan 2017.
  26. DeVries, P.J., Schull, J., & Greig, N. (1987). Synchronous nocturnal activity and gregarious roosting in the neotropical skipper butterfly Celaenorrhinus fritzgaertneri (Lepidoptera: Hesperiidae). Zoological Journal of the Linnean Society, 89(1), 89–103.Google Scholar
  27. Devries, P.J., Austin, G. T., & Martin, N.H. (2008). Diel activity and reproductive isolation in a diverse assemblage of Neotropical skippers (Lepidoptera: Hesperiidae). Biological Journal of the Linnean Society, 94(4), 723–736.Google Scholar
  28. Dugdale, J.S. (1987). Thambotricha vates Meyrick, reassigned to Epermeniidae (Lepidoptera: Epermenioidea). The. New Zealand Journal of Zoology, 14(3), 375–383.  https://doi.org/10.1080/03014223.1987.10423008.
  29. Dugdale, J.S., Kristensen, N.P., Robinson, G.S., & Scoble, M.J. (1998). The smaller microlepidoptera grade superfamilies. In N. P. Kristensen (Ed.), Lepidoptera, moths and butterflies. 1. Evolution, systematics, and biogeography. Handbook of Zoology, Vol. IV, part 35 (pp. 217–232). New York: Walter de Gruyter.Google Scholar
  30. Epstein, M.E., Geertsma, H., Naumann, C.M., & Tarmann, G.M. (1998). The Zygaenoidea. In N. P. Kristensen (Ed.), Lepidoptera, moths and butterflies. 1. Evolution, systematics, and biogeography. Handbook of Zoology, Vol. IV, part 35 (pp. 159–180). New York: Walter de Gruyter.Google Scholar
  31. Evans, D.L. (1978). Defensive behavior in Callosamia promethea and Hyalophora cecropia (Lepidoptera: Saturniidae). American Midland Naturalist, 100(2), 475–479.Google Scholar
  32. Fasoranti, J. (1983). Studies on host selection, flight behaviour and control of the Ceanothus leaf miner Tischeria immaculata (Braun) (Lep., Tischeriidae). Journal of Applied Entomology, 96, 470–476.Google Scholar
  33. Ferguson, D.C. (1978). The moths of America north of Mexico. Fascicle 22.2. Noctuoidea, Lymantriidae. Washington: Wedge Entomological Research Foundation.Google Scholar
  34. Ferguson, D.C. (1985). The moths of America north of Mexico. Fascicle 18.1. Geometroidea: Geometridae (in part). Washington: Wedge Entomological Research Foundation.Google Scholar
  35. Feuda, R., Marletaz, F., Bentley, M.A., & Holland, P.W. (2016). Conservation, duplication, and divergence of five opsin genes in insect evolution. Genome Biology and Evolution, 8(3), 579–587.Google Scholar
  36. Franclemont, J.G. (1973). The moths of America north of Mexico. Fascicle 20.1. Mimallonoidea (Mimallonidae) and Bombycoidea (Apatelodidae, Bombycidae, Lasiocampidae). London: E.W. Classey Ltd. and Richard B. Dominick Publ.Google Scholar
  37. Frost, S.W. (1972). Notes on Urodus parvula (Henry Edwards) (Yponomeutidae). Journal of the Lepidopterists’Society, 26(3), 173–177.Google Scholar
  38. Fullard, J.H. (1982). Cephalic influences on a defensive behaviour in the dogbane tiger moth, Cycnia tenera. Physiological Entomology, 7(2), 157–162.CrossRefGoogle Scholar
  39. Fullard, J.H., & Fenton, M.B. (1977). Acoustic and behavioral analyses of sounds produced by some speceis of nearctic Arctiidae (Lepidoptera). Canadian Journal of Zoology, 55(8), 1213–1224.  https://doi.org/10.1139/z77-160.CrossRefGoogle Scholar
  40. Fullard, J.H., & Napoleone, N. (2001). Diel flight periodicity and the evolution of auditory defences in the Macrolepidoptera. Animal Behaviour, 62(2), 349–368.CrossRefGoogle Scholar
  41. Fullard, J. H., Dawson, J. W., Otero, L. D., & Surlykke, A. (1997). Bat-deafness in day-flying moths (Lepidoptera, Notodontidae, Dioptinae). Journal of Comparative Physiology A, 181(5), 477–483.  https://doi.org/10.1007/S003590050131.
  42. Gielis, C., & de Jong, R. (1993). Generic revision of the superfamily Pterophoroidea (Lepidoptera): Nationaal Natuurhistorisch Museum, Leiden.Google Scholar
  43. Goodwin, S., & Danthanarayana, W. (1984). Flight activity of Plutella xylostella (L.) (Lepidoptera: Yponomeutidae). Australian Journal of Entomology, 23(3), 235–240.CrossRefGoogle Scholar
  44. Gwynne, D. T., & Edwards, E. D. (1986). Ultrasound production by genital stridulation in Syntonarcha iriastis (Lepidoptera: Pyralidae): long-distance signalling by male moths? Zoological Journal of the Linnean Society, 88(4), 363–376.Google Scholar
  45. Hardwick, D.F. (1996). A monograph to the North American Heliothinae (Lepidoptera: Noctuidae). Ottawa: Center for Land and Biological Resources Research. Agriculture Canada.Google Scholar
  46. Harris, T.L. (1971). Crepuscular flight periodicity of Trichoptera. Journal of the Kansas Entomological Society, 44(3), 295–301.Google Scholar
  47. Heikkilä, M., Mutanen, M., Wahlberg, N., Sihvonen, P., & Kaila, L. (2015). Elusive ditrysian phylogeny: an account of combining systematized morphology with molecular data (Lepidoptera). BMC Evolutionary Biology, 15(1), 260.  https://doi.org/10.1186/s12862-015-0520-0. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hennig, W. (1981). Insect phylogeny. Translated and edited by AC Pont, Revisionary notes by D. Schlee. New York: John Wiley & SonsGoogle Scholar
  49. Heppner, J.B. (1982). Millieriinae, a new subfamily of Choreutidae, with new taxa from Chile and the United States (Lepidoptera: Sesioidea). Smithsonian Contributions to Zoology, (370). Washington DC: Smithsonian Institution Press.Google Scholar
  50. Heppner, J.B. (2002). Mexican Lepidoptera biodiversity. Insecta Mundi, 16(4), 171–190.Google Scholar
  51. Heppner, J.B. (2008a). American swallowtail moths (Lepidoptera: Sematuridae). In J.L. Capinera (Ed.), Encyclopedia of Entomology (pp. 149). Dordrecht: Springer, Netherlands.Google Scholar
  52. Heppner, J.B. (2008b). Australian parasite moths (Lepidoptera: Cyclotornidae). In J.L. Capinera (Ed.), Encyclopedia of Entomology (pp. 339). Dordrecht: Springer, Netherlands.Google Scholar
  53. Heppner, J.B. (2008c). Butterflies and moths (Lepidoptera). In J.L. Capinera (Ed.), Encyclopedia of Entomology (pp. 626–672). Dordrecht: Springer, Netherlands.Google Scholar
  54. Heppner, J.B. (2008d). False burnet moths (Lepidptera: Urodidae). In J.L. Capinera (Ed.), Encyclopedia of Entomology (pp. 1412–1413). Dordrecht: Springer, Netherlands.Google Scholar
  55. Heppner, J.B. (2008e). Fruitworm moths (Lepidoptera: Carposinidae). In J.L. Capinera (Ed.), Encyclopedia of Entomology (pp. 1541). Dordrecht: Springer, Netherlands.Google Scholar
  56. Heppner, J.B. (2008f). Glory moths (Lepidoptera: Endromidae). In J.L. Capinera (Ed.), Encyclopedia of Entomology (pp. 1627–1628). Dordrecht: Springer, Netherlands.Google Scholar
  57. Heppner, J.B. (2008g). Gondwanaland moths (Lepidoptera: Palaephatidae). In J.L. Capinera (Ed.), Encyclopedia of Entomology (pp. 1632–1633). Dordrecht: Springer, Netherlands.Google Scholar
  58. Heppner, J.B. (2008h). Long-tailed burnet moths (Lepidoptera: Himantopteridae). In J.L. Capinera (Ed.), Encyclopedia of Entomology​ (pp. 2241–2242). Dordrecht: Springer, Netherlands.Google Scholar
  59. Heppner, J.B. (2008i). Tropical burnet moths (Lepidoptera: Lacturidae). In J.L. Capinera (Ed.), Encyclopedia of Entomology (pp. 3925). Dordrecht: Springer, Netherlands.Google Scholar
  60. Heppner, J.B. (2008j). Tropical carpenterworm moths (Lepidoptera: Metarbelidae). In J.L. Capinera (Ed.), Encyclopedia of Entomology (pp. 3925–3926). Dordrecht: Springer, Netherlands.Google Scholar
  61. Holloway, J.D. (1998). The moths of Borneo: Family Callidulidae. Malayan Nature Journal, 52(8), 7–14.Google Scholar
  62. Horak, M. (1998). The Tortricoidea. In N.P. Kristensen (Ed.), Lepidoptera, moths and butterflies. 1. Evolution, systematics, and biogeography. Handbook of Zoology, Vol. IV, part 35 (Vol. 4, pp. 199–216). New York: Walter De Gruyter.Google Scholar
  63. Idris, A.B., & Zainal-Abidin, B.A.H. (2011). Diurnal behavior of naturally microsporidia-infected Plutella xylostella and its major parasitoid, Diadegma semiclausum. In Proceedings of the sixth international workshop on management of the diamondback moth and other crucifer insect pests. AVRDC (pp. 46–50).Google Scholar
  64. Janzen, D.H. (1984). Two ways to be a tropical big moth: Santa Rosa saturniids and sphingids. In R. Dawkins, & M. Ridley (Eds.), Oxford surveys in evolutionary biology (vol. 1, pp. 85–140). Oxford: Oxford University Press.Google Scholar
  65. Johns, C.A., Moore, M.R. & Kawahara, A.Y. (2016). Molecular phylogeny, revised higher classification, and implications for conservation of endangered Hawaiian leaf-mining moths (Lepidoptera: Gracillariidae: Philodoria). Pacific Science 70 (3):361–372.  https://doi.org/10.2984/70.3.7
  66. Jost, B., Schmid, J., & Wymann, H. (2000). Lasiocampidae–Glucken. Wollraupenspinner. Schmetterlinge und ihre Lebensräume: Arten–Gefährdung-Schutz. Schweiz und angrenzenden Gebiete, 3, 263–350.Google Scholar
  67. Kakul, T., Aloysius, M., & Samai, K. (2006). Coconut inflorescence borer, Synneschodes papuana (Lepidoptera: Brachodidae), an important new pest of coconut in Papua New Guinea. In T. V. Price (Ed.), Pest and disease incursions: risks, threats and management in Papua New Guinea (pp. 146–150). Canberra: Australian Centre for International Agricultural Research.Google Scholar
  68. Kallies, A. (2004). The Brachodidae of the oriental region and adjacent territories (Lepidoptera: Sesioidea). Tijdschrift voor Entomologie, 147(1), 1–19.CrossRefGoogle Scholar
  69. Kan, E., Kitajima, H., Hidaka, T., Nakashima, T., & Sato, T. (2002). Dusk mating flight in the swift moth, Endoclita excrescens (Butler) (Lepidoptera: Hepialidae). Applied Entomology and Zoology, 37(1), 147–153.Google Scholar
  70. Kawahara, A.Y., & Barber, J.R. (2015). Tempo and mode of ultrasound and jamming in the diverse hawkmoth radiation. Proceedings of the National Academy of Sciences, USA, 112(20), 6407–6412.  https://doi.org/10.1073/pnas.1416679112.CrossRefGoogle Scholar
  71. Kawahara, A.Y., & Breinholt, J.W. (2014). Phylogenomics provides strong evidence for relationships of butterflies and moths. Proceedings of the Royal Society of London, Series B, 281, 20140970.  https://doi.org/10.1098/rspb.2014.0970.
  72. Kawahara, A.Y., Mignault, A.A., Regier, J.C., Kitching, I.J., & Mitter, C. (2009). Phylogeny and biogeography of hawkmoths (Lepidoptera: Sphingidae): evidence from five nuclear genes. PLOS ONE, 4(5), e5719.  https://doi.org/10.1371/journal.pone.0005719.
  73. Kawahara, A.Y., Nishida, K., & Rubinoff, D. (2011a). Behavior of the Hawaiian dancing moth, Dryadaula terpsichorella (Tineidae: Dryadaulinae). Journal of the Lepidopterists  Society, 65(2), 133–135.  https://doi.org/10.18473/lepi.v65i2.a6.
  74. Kawahara, A.Y., Ohshima, I., Kawakita, A., Regier, J.C., Mitter, C., Cummings, M.P., et al. (2011b). Increased gene sampling strengthens support for higher-level groups within leaf-mining moths and relatives (Lepidoptera: Gracillariidae). BMC Evolutionary Biology, 11, 182.  https://doi.org/10.1186/1471-2148-11-182.
  75. Kawahara, A.Y., Plotkin, D., Ohshima, I., Lopez-Vaamonde, C., Houlihan, P.R., Breinholt, J.W., et al. (2017). A molecular phylogeny and revised higher-level classification for the leaf-mining moth family Gracillariidae and its implications for larval host-use evolution. Systematic Entomology, 42(1), 60–81.  https://doi.org/10.1111/syen.12210.CrossRefGoogle Scholar
  76. Kelber, A., Balkenius, A., & Warrant, E.J. (2003). Colour vision in diurnal and nocturnal hawkmoths. Integrative and Comparative Biology, 43(4), 571–579.  https://doi.org/10.1093/icb/43.4.571.CrossRefPubMedGoogle Scholar
  77. Kelber, A., Warrant, E.J., Pfaff, M., Wallén, R., Theobald, J.C., Wcislo, W.T., et al. (2006). Light intensity limits foraging activity in nocturnal and crepuscular bees. Behavioral Ecology, 17(1), 63–72.CrossRefGoogle Scholar
  78. Kemal, M., & Koçak, A. (2014). Illustrated and annotated list on the Entomofauna of Gören Mount (Van Province, East Turkey), with ecological remarks I—period of April-June 2014. Priamus (Suppl.), 33, 5–206.Google Scholar
  79. Kendall, R.O., & Glick, P.A. (1972). Rhopalocera collected at light in Texas. Journal of Research on the Lepidoptera, 10(4), 273–283.Google Scholar
  80. Kitching, I.J., & Rawlins, J.E. (1998). The Noctuoidea. In N.P. Kristensen (Ed.), Lepidoptera, moths and butterflies. 1. Evolution, systematics, and biogeography. Handbook of Zoology, vol. IV, part 35 (pp. 355–401). New York: Walter de Gruyter.Google Scholar
  81. Kite, G. C., Fellows, L.E., Lees, D. C., Kitchen, D., & Monteith, G.B. (1991). Alkaloidal glycosidase inhibitors in nocturnal and diurnal uraniine moths and their respective foodplant genera, Endospermum and Omphalea. Biochemical Systematics and Ecology, 19(6), 441–445.CrossRefGoogle Scholar
  82. Kozlov, M.V., Ivanov, V.D., & Rasnitsyn, A.P. (2007). Order Lepidoptera Linne, 1758. The butterflies and moths. In A. P. Rasnitsyn & D. L. Quicke (Eds.), History of insects (pp. 220–227). Berlin: Springer Science & Business Media.Google Scholar
  83. Kristensen, N.P. (1998). Lepidoptera, moths and butterflies, volume 1: evolution, systematics, and biogeography. In M. Fischer (Ed.), Handbook of zoology, Vol. IV, part 35. New York: Walter de Gruyter.Google Scholar
  84. Kristensen, N.P. (2012). Molecular phylogenies, morphological homologies and the evolution of ‘moth ears’. Systematic Entomology, 37(2), 237–239.  https://doi.org/10.1111/j.1365-3113.2012.00619.x
  85. Kristensen, N.P., & Skalski, A.W. (1998). Phylogeny and palaeontology. In N. P. Kristensen (Ed.), Lepidoptera, moths and butterflies. 1. Evolution, systematics, and biogeography. Handbook of Zoology, Vol. IV, part 35 (pp. 7–25). New York: Walter de Gruyter.Google Scholar
  86. Kristensen, N.P., Hilton, D.J., Kallies, A., Milla, L., Rota, J., Wahlberg, N., et al. (2015). A new extant family of primitive moths from Kangaroo Island, Australia, and its significance for understanding early Lepidoptera evolution. Systematic Entomology, 40(1), 5–16.CrossRefGoogle Scholar
  87. Lafontaine, J.D. (1987). The moths of America north of Mexico. Fascicle 27.2. Noctuoidea, Noctuidae (part), Noctuinae (part-Euxoa). Washington: Wedge Entomological Research Foundation.Google Scholar
  88. Lafontaine, J.D. (1998). The moths of America north of Mexico. Fascicle 27.3. Noctuoidea, Noctuidae (part): Noctuinae (part): Noctuini. Washington: Wedge Entomological Research Foundation.Google Scholar
  89. Lafontaine, J.D. (2004). The moths of America north of Mexico. Fascicle 27.1. Noctuoidea. Noctuidae (part). Washington: Wedge Entomological Research Foundation.Google Scholar
  90. Lafontaine, J., & Poole, R. (1991). The moths of America north of Mexico. Fascicle 25.1. Noctuoidea, Noctuidae (part), Plusiinae. Washington: Wedge Entomological Research Foundation.Google Scholar
  91. Lamarre, G.P.A., Mendoza, I., Rougerie, R., Decaëns, T., Hérault, B., & Bénéluz, F. (2015). Stay out (almost) all night: contrasting responses in flight activity among tropical moth assemblages. Neotropical Entomology, 44(2), 109–115.CrossRefPubMedGoogle Scholar
  92. Landry, J. (1998). Additional Nearctic records of Wockia asperipunctella, with notes on its distribution and structural variation (Lepidoptera: Urodidae). Holarctic Lepidoptera, 5(1), 9–13.Google Scholar
  93. Landry, B., & Landry, J.-F. (2004). The genus Alucita in North America, with description of two new species (Lepidoptera: Alucitidae). The Canadian Entomologist, 136(4), 553–579.CrossRefGoogle Scholar
  94. Langlois, T.H., & Langlois, M.H. (1964). Notes on the life-history of the hackberry butterfly, Asterocampa celtis (Bdvl. & Lec.) on South Bass Island, Lake Erie (Lepidoptera: Nymphalidae). Ohio. Journal of Science, 64(1), 1–11.Google Scholar
  95. Laštůvka, Z., & Laštůvka, A. (2001). The Sesiidae of Europe: Apollo Books Aps.Google Scholar
  96. Lemaire, C. (2002). The Saturniidae of America. Les Saturniidae Americains (= Attacidae). Hemileucinae. Keltern: Goecke & Evers.Google Scholar
  97. Lemaire, C., & Minet, J. (1998). The Bombycoidea and their relatives. In N. P. Kristensen (Ed.), Lepidoptera, moths and butterflies. 1. Evolution, systematics, and biogeography. Handbook of Zoology, vol. IV, part 35 (pp. 321–353). New York: Walter de Gruyter.Google Scholar
  98. Maor, R., Dayan, T., Ferguson-Gow, H., Jones, K.E. (2017). Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nature Ecology & Evolution.  https://doi.org/10.1038/s41559-017-0366-5
  99. Matthews, D.L. (2008). Plume moths (Lepidoptera: Pterophoridae). In J.L. Capinera (Ed.), Encyclopedia of Entomology (pp. 2953–2959): Dordrecht: Springer, Netherlands.Google Scholar
  100. Meiswinkel, R., & Elbers, A. (2016). The dying of the light: crepuscular activity in Culicoides and impact on light trap efficacy at temperate latitudes. Medical and Veterinary Entomology , 30(1), 53–63.Google Scholar
  101. Merckx, T., & Slade, E.M. (2014). Macro-moth families differ in their attraction to light: implications for light-trap monitoring programmes. Insect Conservation and Diversity, 7(5), 453–461.CrossRefGoogle Scholar
  102. Michereff, M. F. F., Michereff-Filho, M., & Vilela, E. F. (2007). Mating behavior of the coffee leaf-miner Leucoptera coffeella (Guérin-Mèneville)(Lepidoptera: Lyonetiidae). Neotropical Entomology, 36(3), 376–382.CrossRefPubMedGoogle Scholar
  103. Mikkola, K., Lafontaine, J., & Gill, J. (2009). The moths of America north of Mexico. Fascicle 26.9. Noctuoidea: Noctuidae (part): Xyleninae (part): Apameini (part–Apamea group of genera). Washington: Wedge Entomological Research Foundation.Google Scholar
  104. Miller, J. (1986). The taxonomy, phylogeny, and zoogeography of the neotropical Castniinae (Lepidoptera: Castnioidea: Castniidae). Ph. D. Thesis: University of Florida, Gainesville, USA.Google Scholar
  105. Miller, J.S. (2009). Generic revision of the Dioptinae (Lepidoptera: Noctuoidea: Notodontidae) Part 1: Dioptini. Bulletin of the American Museum of Natural History, 321, 1–674.Google Scholar
  106. Miller, J.Y., & Sourakov, A. (2009). Scientific note: some observations on Amauta cacica procera (Boisduval) (Castniidae : Castniinae) in Costa Rica. Tropical Lepidoptera Research, 19(2), 113–114.Google Scholar
  107. Minet, J. (1998). The Axioidea and Calliduloidea. In N.P. Kristensen (Ed.), Lepidoptera, moths and butterflies. 1. Evolution, systematics, and biogeography. Handbook of zoology, vol. IV, part 35 (pp. 257–261). New York: Walter de Gruyter.Google Scholar
  108. Minet, J. (2002). The Epicopeiidae: phylogeny and a redefinition, with the description of new taxa (Lepidoptera: Drepanoidea). Annales de la Société Entomologique de France, 38(4), 463–487.Google Scholar
  109. Minet, J., & Scoble, M.J. (1998). The Drepanoid/Geometroid assemblage. In N.P. Kristensen (Ed.), Lepidoptera, moths and butterflies. 1. Evolution, systematics, and biogeography. Handbook of Zoology, vol. IV, part 35. New York: Walter de Gruyter.Google Scholar
  110. Minet, J., & Surlykke, A. (2003). Auditory and sound producing organs. In N. P. Kristensen (Ed.), Lepidoptera, moths and butterflies. 2. Morphology and physiology. Handbook of zoology, vol. IV, part 36 (pp. 289–323). New York: Walter de Gruyter.Google Scholar
  111. Misof, B., Liu, S.L., Meusemann, K., Peters, R. S., Donath, A., Mayer, C., et al. (2014). Phylogenomics resolves the timing and pattern of insect evolution. Science , 346(6210), 763–767.  https://doi.org/10.1126/Science.1257570.
  112. Mitter, C., Davis, D.R., & Cummings, M.P. (2017). Phylogeny and evolution of Lepidoptera. Annual Review of Entomology, 62, 265–283.CrossRefPubMedGoogle Scholar
  113. Monsalve, S., Dombroskie, J.J., Lam, W.H., Rota, J., & Brown, J.W. (2011). Variation in the female frenulum in Tortricidae (Lepidoptera). Part 3. Tortricinae. Proceedings of the Entomological Society of Washington, 113(3), 335–370.CrossRefGoogle Scholar
  114. Muma, K.E., & Fullard, J.H. (2004). Persistence and regression of hearing in the exclusively diurnal moths, Trichodezia albovittata (Geometridae) and Lycomorpha pholus (Arctiidae). Ecological Entomology, 29(6), 718–726.CrossRefGoogle Scholar
  115. Murphy, S.M., Lill, J. T., & Epstein, M. E. (2011). Natural history of limacodid moths (Zygaenoidea) in the environs of Washington, D.C. Journal of the Lepidopterists' Society, 65, 137–152.  10.18473/lepi.v65i3.a1.
  116. Mutanen, M., Wahlberg, N., & Kaila, L. (2010). Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proceedings of the Royal Society of London, Series B, 277, 2839–2848.CrossRefGoogle Scholar
  117. Narendra, A., Reid, S.F., & Hemmi, J. M. (2010). The twilight zone: ambient light levels trigger activity in primitive ants. Proceedings of the Royal Society of London B: Biological Sciences, 277(1687), 1531–1538.Google Scholar
  118. Niehuis, O., Yen, S.-H., Naumann, C.M., & Misof, B. (2006). Higher phylogeny of zygaenid moths (Insecta: Lepidoptera) inferred from nuclear and mitochondrial sequence data and the evolution of larval cuticular cavities for chemical defence. Molecular Phylogenetics and Evolution, 39(3), 812–829.Google Scholar
  119. Nielsen, E. S. (1987). The recently discovered primitive (non-ditrysian) family Palaephatidae (Lepidoptera) in Australia. Invertebrate Systematics, 1(2), 201–229.CrossRefGoogle Scholar
  120. Nielsen, E. S., & Kristensen, N. P. (1996). The Australian moth family Lophocoronidae and the basal phylogeny of the Lepidoptera–Glossata. Invertebrate Systematics, 10(6), 1199–1302.CrossRefGoogle Scholar
  121. van Nieukerken, E.J., Kaila, L., Kitching, I.J., Kristensen, N.P., Lees, D.C., Minet, J., et al. (2011). Order Lepidoptera Linnaeus, 1758. In: Zhang, Z.-Q. (Ed.), Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148, 212–221.Google Scholar
  122. Ormiston, W. (1924). The butterflies of Ceylon. New Delhi: Asian Educational Services.Google Scholar
  123. Ounap, E., Viidalepp, J., & Truuverk, A. (2016). Phylogeny of the subfamily Larentiinae (Lepidoptera: Geometridae): integrating molecular data and traditional classifications. Systematic Entomology, 41(4), 824–843.CrossRefGoogle Scholar
  124. Pellmyr, O. (1999). Systematic revision of the yucca moths in the Tegeticula yuccasella complex (Lepidoptera: Prodoxidae) north of Mexico. Systematic Entomology, 24(3), 243–271.CrossRefGoogle Scholar
  125. Pellmyr, O., & BalcÁzar-Lara, M. (2000). Systematics of the yucca moth genus Parategeticula (Lepidoptera: Prodoxidae), with description of three mexican species. Annals of the Entomological Society of America, 93(3), 432–439.CrossRefGoogle Scholar
  126. Petersson, E. (1989). Swarming activity patterns and seasonal decline in adult size in some caddis flies (Trichoptera: Leptoceridae). Aquatic Insects, 11(1), 17–28.CrossRefGoogle Scholar
  127. Pohl, G.R., Cannings, R.A., Landry, J.-F., Holden, D.G., & Scudder, G.G. (2015). Checklist of the Lepidoptera of British Columbia, Canada. Entomological Society of British Columbia Occasional Paper No. 3.Google Scholar
  128. Poole, R.W. (1994). The moths of America north of Mexico. Fascicle 26.1. Noctuoidea, Noctuidae (part). Washington: Wedge Entomological Research Foundation.Google Scholar
  129. Poole, R.W. (2014). Noctuidae - Agaristinae. http://nearctica.com/moths/noctuid/agarista/agaristid.htm. Accessed 15 Feb 2017.
  130. Powell, J.A., & Opler, P.A. (2009). Moths of western North America. Berkeley: University of California Press.CrossRefGoogle Scholar
  131. Rajaei, H., Greve, C., Letsch, H., Stüning, D., Wahlberg, N., Minet, J., et al. (2015). Advances in Geometroidea phylogeny, with characterization of a new family based on Pseudobiston pinratanai (Lepidoptera, Glossata). Zoologica Scripta, 44(4), 418–436.CrossRefGoogle Scholar
  132. Ratcliffe, J.M., & Fullard, J.H. (2005). The adaptive function of tiger moth clicks against echolocating bats: an experimental and synthetic approach. The Journal of Experimental Biology, 208, 4689–4698.  https://doi.org/10.1242/jeb.01927. CrossRefPubMedGoogle Scholar
  133. Razafimanantsoa, T.M., Rajoelison, G., Ramamonjisoa, B., Raminosoa, N., Poncelet, M., Bogaert, J., et al. (2012). Silk moths in Madagascar: a review of the biology, uses, and challenges related to Borocera cajani (Vinson, 1863) (Lepidoptera: Lasiocampidae). Biotechnologie, Agronomie, Société et Environnement, 16(2), 269–276.Google Scholar
  134. Regier, J.C., Zwick, A., Cummings, M.P., Kawahara, A.Y., Cho, S., Weller, S., et al. (2009). Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study. BMC Evolutionary Biology, 9, 280.  https://doi.org/10.1186/1471-2148-9-280.CrossRefPubMedPubMedCentralGoogle Scholar
  135. Regier, J.C., Brown, J.W., Mitter, C., Baixeras, J., Cho, S., Cummings, M. P., et al. (2012a). A molecular phylogeny for the leaf-roller moths (Lepidoptera: Tortricidae) and its implications for classification and life history evolution. PLOS ONE, 7(4), e35574.  https://doi.org/10.1371/journal.pone.0035574.
  136. Regier, J.C., Mitter, C., Solis, M.A., Hayden, J.E., Landry, B., Nuss, M., et al. (2012b). A molecular phylogeny for the pyraloid moths (Lepidoptera: Pyraloidea) and its implications for higher-level classification. Systematic Entomology, 37(4), 635–656.  https://doi.org/10.1111/j.1365-3113.2012.00641.x.CrossRefGoogle Scholar
  137. Regier, J.C., Mitter, C., Zwick, A., Bazinet, A. L., Cummings, M.P., Kawahara, A. Y., et al. (2013). A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PLOS ONE, 8(3), e58568.  https://doi.org/10.1371/journal.pone.0058568.
  138. Regier, J.C., Mitter, C., Kristensen, N.P., Davis, D.R., Van Nieukerken, E.J., Rota, J., et al. (2015a). A molecular phylogeny for the oldest (nonditrysian) lineages of extant Lepidoptera, with implications for classification, comparative morphology and life-history evolution. Systematic Entomology, 40(4), 671–704.  https://doi.org/10.1111/syen.12129.
  139. Regier, M., Mitter, C., Davis, D.R., Harrison, T.L., Sohn, J.-C., & Cummings, M.P. (2015b). A molecular phylogeny and revised classification for the oldest ditrysian moth lineages (Lepidoptera: Tineoidea), with implications for ancestral feeding habits of the mega-diverse Ditrysia. Systematic Entomology, 40(2), 409–432.  https://doi.org/10.1111/syen.12110.CrossRefGoogle Scholar
  140. Revell, L.J. (2012). Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution , 3(2), 217–223.  https://doi.org/10.1111/j.2041-210X.2011.00169.x.
  141. Revell, L.J. (2013). Two new graphical methods for mapping trait evolution on phylogenies. Methods in Ecology and Evolution, 4(8), 754–759.  https://doi.org/10.1111/2041-210x.12066.CrossRefGoogle Scholar
  142. Rhainds, M., Davis, D.R., & Price, P.W. (2009). Bionomics of bagworms (Lepidoptera: Psychidae). Annual Review of Entomology, 54, 209–226.CrossRefPubMedGoogle Scholar
  143. Robinson, G.S., & Nielsen, E.S. (1993). Tineid genera of Australia (Lepidoptera). Vol. 2, Monographs on Australian Lepidoptera. Melbourne: CSIRO Publishing.Google Scholar
  144. Rocha, C.F.D., & Duarte, M. (2001). Territorial-like defensive behavior of floral resources by Heliconius ethilla narcaea Godart over H. sara apseudes (Hübner) (Lepidoptera, Nymphalidae, Heliconiinae). Revista Brasileira de  Zoologia, 18 (Suppl. 1), 323–328.Google Scholar
  145. Roeder, K.D., & Treat, A.E. (1970). An acoustic sense in some hawkmoths (Choerocampinae). Journal of Insect Physiology, 16(6), 1069–1086.CrossRefGoogle Scholar
  146. Roelofs, W.L., & Brown, R.L. (1982). Pheromones and evolutionary relationships of Tortricidae. Annual Review of Ecology and Systematics, 13(1), 395–422.CrossRefGoogle Scholar
  147. Rota, J., & Kristensen, N.P. (2011). Note on taxonomic history, thoraco-abdominal articulation, and current placement of Millieriidae (Lepidoptera). Zootaxa, 3032, 65–78.Google Scholar
  148. Rota, J., & Miller, S.E. (2013). A new genus of metalmark moths (Lepidoptera, Choreutidae) with Afrotropical and Australasian distribution. ZooKeys, 355, 29–47.Google Scholar
  149. Rota, J., & Wagner, D.L. (2006). Predator mimicry: metalmark moths mimic their jumping spider predators. PLOS ONE , 1(1), e45.Google Scholar
  150. Rydell, J., Entwistle, A., & Racey, P.A. (1996). Timing of foraging flights of three species of bats in relation to insect activity and predation risk. Oikos, 76(2), 243–252.  https://doi.org/10.2307/3546196. CrossRefGoogle Scholar
  151. Saldaitis, A., Yakovlev, R., & Ivinskis, P. (2007). Carpenter moths (Insecta: Lepidoptera, Cossidae) of Lebanon. Acta Zoologica Lituanica, 17(3), 191–197.CrossRefGoogle Scholar
  152. Sato, H., Higashi, S., & Fukuda, H. (1986). Nocturnal flight activity of moths. Environmental science, Hokkaido: Journal of the Graduate School of Environmental Science, Hokkaido University, Sapporo, 9(1), 59–68.Google Scholar
  153. Scoble, M. J. (1986). The structure and affinities of the Hedyloidea: a new concept of the butterflies. Bulletin of The British Museum (Natural History) Entomology, 53, 251–286.Google Scholar
  154. Scoble, M.J. (1990). An identification guide to the Hedylidae (Lepidoptera: Hedyloidea). Insect Systematics & Evolution, 21(2), 121–158.CrossRefGoogle Scholar
  155. Scoble, M.J. (1992). The Lepidoptera: form, function, and diversity. Oxford: Oxford University Press.Google Scholar
  156. Scoble, M.J., & Aiello, A. (1990). Moth-like butterflies (Hedylidae: Lepidoptera): a summary, with comments on the egg. Journal of Natural History, 24(1), 159–164.CrossRefGoogle Scholar
  157. Sekita, N. (2002). Mass flight activity of Lyonetia prunifoliella malinella (Lepidoptera: Lyonetiidae) with special reference to mating and dispersal. Applied Entomology and Zoology, 37(4), 517–526.CrossRefGoogle Scholar
  158. Sharma, S., Tara, J.S., & Bhatia, S. (2013). Bionomics of Hyblaea puera (Lepidoptera: Hyblaeidae), a serious pest of teak (Tectona grandis) from Jammu (India). Munis Entomology & Zoology, 8(1), 139–147.Google Scholar
  159. Singh, I. J. (2014). Butterfly diversity of Dzamling Norzoed Community Forest, Tsirang, Bhutan—a preliminary study. SAARC Forestry Journal, 3, 38–46.Google Scholar
  160. Sohn, J.C., Regier, J.C., Mitter, C., Davis, D., Landry, J.F., Zwick, A., et al. (2013). A molecular phylogeny for Yponomeutoidea (Insecta, Lepidoptera, Ditrysia) and its implications for classification, biogeography and the evolution of host plant use. PLOS ONE , 8(1), e55066.  https://doi.org/10.1371/journal.pone.0055066.
  161. Sohn, J.-C., Regier, J.C., Mitter, C., Adamski, D., Landry, J.-F., Heikkilä, M., et al. (2016). Phylogeny and feeding trait evolution of the mega-diverse Gelechioidea (Lepidoptera: Obtectomera): New insight from 19 nuclear genes. Systematic Entomology, 41(1), 112–132.  https://doi.org/10.1111/syen.12143.CrossRefGoogle Scholar
  162. Spangler, H.G. (1985). Sound production and communication by the greater wax moth (Lepidoptera: Pyralidae). Annals of the Entomological Society of America, 78(1), 54–61.Google Scholar
  163. St Laurent, R., & Carvalho, A.P.S. (2017). Report of diurnal activity in Mimallonoidea with notes on the sexual behavior of Lacosoma chiridota Grote, 1864. Journal of the Lepidopterists'  Society, 71(1), 12–15.Google Scholar
  164. Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313.  https://doi.org/10.1093/bioinformatics/btu033.CrossRefPubMedPubMedCentralGoogle Scholar
  165. Tuskes, P.M., Tuttle, J.P., & Collins, M.M. (1996). The wild silk moths of North America: A natural history of the Saturniidae of the United States and Canada. Ithaca: Cornell University Press.Google Scholar
  166. United_States_Naval_Oceanography_Portal. (2011). Rise, set. In and twilight definitions http://aa.usno.navy.mil/faq/docs/RST_defs.php2016.Google Scholar
  167. Wagner, D. (1985). Biology and description of the larva of Dicymolomia metalliferalis: a case-bearing Glaphyriine (Pyralidae). Journal of the Lepidopterists Society, 39(1), 13–18.Google Scholar
  168. Wagner, D.L. (2005). Caterpillars of eastern North America: a guide to identification and natural history. Princeton: Princeton University Press.Google Scholar
  169. Ward, J.B. (1995). Nine new species of New Zealand caddis (Trichoptera). New Zealand Journal of Zoology, 22, 91–103.  https://doi.org/10.1080/03014223.1995.9518025.CrossRefGoogle Scholar
  170. Warren, A.D., Ogawa, J.R., & Brower, A.V. (2009). Revised classification of the family Hesperiidae (Lepidoptera: Hesperioidea) based on combined molecular and morphological data. Systematic Entomology, 34(3), 467–523.CrossRefGoogle Scholar
  171. Weller, S., DaCosta, M., Simmons, R., Dittmar, K., & Whiting, M. (2009). Evolution and taxonomic confusion in Arctiidae. In W. E. Connor (Ed.), Tiger moths and woolly bears, behavior, ecology, and evolution of the Arctiidae (pp. 11–30). New York: Oxford University Press.Google Scholar
  172. Wells, A. (1990). The micro-caddisflies (Trichoptera: Hydroptilidae) of North Sulawesi. Invertebrate Systematics, 3, 363–406.  https://doi.org/10.1071/IT9890363. CrossRefGoogle Scholar
  173. Whiting, M.F., Carpenter, J.C., Wheeler, Q.D., & Wheeler, W.C. (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology, 46, 1–68.  https://doi.org/10.1093/sysbio/46.1.1. PubMedGoogle Scholar
  174. Wiggins, G.B. (1998). The Caddisfly family Phryganeidae (Trichoptera). Toronto: University of Toronto Press.Google Scholar
  175. Wiggins, G.B. (2015). Larvae of the North American Caddisfly genera (Trichoptera). Toronto: University of Toronto Press.Google Scholar
  176. Willemstein, S.C. (1987). An evolutionary basis for pollination ecology. Leiden Botanical Series, 10, 3–425.Google Scholar
  177. Yack, J.E. (2004). The structure and function of auditory chordotonal organs in insects. Microscopy Research and Technique, 63(6), 315–337.CrossRefPubMedGoogle Scholar
  178. Yack, J.E., & Fullard, J.H. (2000). Ultrasonic hearing in nocturnal butterflies. Nature, 403(6767), 265–266.CrossRefPubMedGoogle Scholar
  179. Yack, J.E., Scudder, G.G.E., & Fullard, J.H. (1999). Evolution of the metathoracic tympanal ear and its mesothoracic homologue in the Macrolepidoptera (Insecta). Zoomorphology, 119(2), 93–103.  https://doi.org/10.1007/S004350050084.CrossRefGoogle Scholar
  180. Yack, J.E., Johnson, S.E., Brown, S.G., & Warrant, E.J. (2007). The eyes of Macrosoma sp. (Lepidoptera: Hedyloidea): a nocturnal butterfly with superposition optics. Arthropod Structure & Development, 36(1), 11–22.CrossRefGoogle Scholar
  181. Yagi, S., Hirowatari, T., & Arita, Y. (2016). A remarkable new species of the genus Teinotarsina (Lepidoptera, Sesiidae) from Okinawa-jima, Japan. ZooKeys, 571, 143–152.Google Scholar
  182. Yakovlev, R. (2015). Patterns of geographical distribution of carpenter moths (Lepidoptera: Cossidae) in the old world. Contemporary Problems of Ecology, 8(1), 36–50.CrossRefGoogle Scholar
  183. Yen, S.-H., & Minet, J. (2007). Cimelioidea: a new superfamily name for the gold moths (Lepidoptera: Glossata). Zoological Studies, 46(3), 262–271.Google Scholar
  184. Yen, S.H., Robinson, G.S., & Quicke, D.L. (2005). Phylogeny, systematics and evolution of mimetic wing patterns of Eterusia moths (Lepidoptera, Zygaenidae, Chalcosiinae). Systematic Entomology, 30(3), 358–397.CrossRefGoogle Scholar
  185. Yen, S.-H., Wu, S., & Chen, Y.-L. (2009). Biota Taiwanica: Hexapoda: Lepidoptera. Drepanoidea, Drepanidae, Cyclidiinae: National Sun Yat-Sen University & National Science Council, Guangzhou.Google Scholar
  186. Zahiri, R., Lafontaine, D., Schmidt, C., Holloway, J.D., Kitching, I.J., Mutanen, M., et al. (2013). Relationships among the basal lineages of Noctuidae (Lepidoptera, Noctuoidea) based on eight gene regions. Zoologica Scripta, 42(5), 488–507.CrossRefGoogle Scholar
  187. Zaspel, J.M., Weller, S. J., & Epstein, M.E. (2016). Origin of the hungry caterpillar: evolution of fasting in slug moths (Insecta: Lepidoptera: Limacodidae). Molecular Phylogenetics and Evolution, 94, 827–832.  https://doi.org/10.1016/j.ympev.2015.09.017.CrossRefPubMedGoogle Scholar
  188. Zborowski, P., & Edwards, T. (2007). A guide to Australian moths.Clayton: CSIRO Publishing.Google Scholar
  189. Zwick, A., Regier, J.C., Mitter, C., & Cummings, M.P. (2011). Increased gene sampling yields robust support for higher-level clades within Bombycoidea (Lepidoptera). Systematic Entomology, 36(1), 31–43.CrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2017

Authors and Affiliations

  • Akito Y. Kawahara
    • 1
    • 2
    • 3
  • David Plotkin
    • 1
    • 2
  • Chris A. Hamilton
    • 1
  • Harlan Gough
    • 1
    • 3
  • Ryan St Laurent
    • 1
    • 3
  • Hannah L. Owens
    • 1
  • Nicholas T. Homziak
    • 1
    • 2
  • Jesse R. Barber
    • 4
  1. 1.Florida Museum of Natural HistoryUniversity of FloridaGainesvilleUSA
  2. 2.Department of Entomology and NematologyUniversity of FloridaGainesvilleUSA
  3. 3.Department of BiologyUniversity of FloridaGainesvilleUSA
  4. 4.Department of Biological SciencesBoise State UniversityBoiseUSA

Personalised recommendations