Advertisement

Organisms Diversity & Evolution

, Volume 17, Issue 4, pp 813–820 | Cite as

An evolutionary timescale for terrestrial isopods and a lack of molecular support for the monophyly of Oniscidea (Crustacea: Isopoda)

  • Luana S. F. LinsEmail author
  • Simon Y. W. Ho
  • Nathan Lo
Original Article

Abstract

The marine metazoan fauna first diversified in the early Cambrian, but terrestrial environments were not colonized until at least 100 million years later. Among the groups of organisms that successfully colonized land is the crustacean order Isopoda. Of the 10,000 described isopod species, ~ 3,600 species from the suborder Oniscidea are terrestrial. Although it is widely thought that isopods colonized land only once, some studies have failed to confirm the monophyly of Oniscidea. To infer the evolutionary relationships among isopod lineages, we conducted phylogenetic analyses of nuclear 18S and 28S and mitochondrial COI genes using maximum-likelihood and Bayesian methods. We also analyzed a second data set comprising all of the mitochondrial protein-coding genes from a smaller sample of isopod taxa. Based on our analyses using a relaxed molecular clock, we dated the origin of terrestrial isopods at 289.5 million years ago (95% credibility interval 219.6–358.9 million years ago). These predate the known fossil record of these taxa and coincide with the formation of the supercontinent Pangaea and with the diversification of vascular plants on land. Our results suggest that the terrestrial environment has been colonized more than once by isopods. The monophyly of the suborder Oniscidea was not supported in any of our analyses, conflicting with classical views based on morphology. This draws attention to the need for further work on this group of isopods.

Keywords

Isopods Oniscids Phylogeny Molecular clock 

Notes

Acknowledgements

This research was supported by a University of Sydney International Scholarship to LSFL. SYWH and NL were supported by the Australian Research Council. We thank George (Buz) Wilson for constructive advice throughout the course of this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Only invertebrates were used in this study, and ethical approval is not needed.

Supplementary material

13127_2017_346_MOESM1_ESM.pdf (2.3 mb)
ESM 1 (PDF 2339 kb).

References

  1. Brandt, A., & Poore, G. C. B. (2003). Higher classification of the flabelliferan and related Isopoda based on a reappraisal of relationships. Invertebrate Systematics, 17, 893–923.CrossRefGoogle Scholar
  2. Broly, P., Deville, P., & Maillet, S. (2013). The origin of terrestrial isopods (Crustacea: Isopoda: Oniscidea). Evolutionary Ecology, 27, 461–476.CrossRefGoogle Scholar
  3. Broly, P., Maillet, S., & Ross, A. J. (2015). The first terrestrial isopod (Crustacea: Isopoda: Oniscidea) from Cretaceous Burmese amber of Myanmar. Cretaceous Research, 55, 220–228.CrossRefGoogle Scholar
  4. Brusca, R. C., & Wilson, G. D. F. (1991). A phylogenetic analysis of the Isopoda with some classificatory recommendations. Memoirs of the Queensland Museum, 31, 143–204.Google Scholar
  5. Burggren, W. W., & McMahon, B. R. (1988). Biology of the land crabs. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  6. Carefoot, T. H., & Taylor, B. E. (1995). Ligia: a prototypal terrestrial isopod. In M. A. Alikhan (Ed.), Terrestrial isopod biology (pp. 47–60). Rotterdam: A.A. Balkema International Publishers.Google Scholar
  7. Carefoot, T. H., Wright, J., Pennings, S. C., Ziegler, A., Zimmer, M., Uglow, R. F., Danford, A. R., & Danko, J. P. (2000). Hemolymph homeostasis in relation to diel feeding activity and microclimate in the prototypal land isopod Ligia pallasii. Canadian Journal of Zoology, 78, 588–595.CrossRefGoogle Scholar
  8. Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17, 540–552.CrossRefPubMedGoogle Scholar
  9. Diesel, R., Schubart, C. D., & Schuh, M. (2000). A reconstruction of the invasion of land by Jamaican crabs (Grapsidae: Sesarminae). Journal of Zoology, 250, 141–160.CrossRefGoogle Scholar
  10. Dreyer, H., & Wägele, W. (2001). Parasites of crustaceans (Isopoda: Bopyridae) evolved from fish parasites: molecular and morphological evidence. Zoology, 103, 157–178.Google Scholar
  11. Drummond, A. J., Ho, S. Y. W., Phillips, M. J., & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology, 4, e88.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Edney, E. B. (1968). Transition from water to land in isopod crustaceans. American Zoologist, 8, 309–326.CrossRefGoogle Scholar
  15. Erhard, F. (1995). Vergleichend- und funktionell- anatomische Untersuchungen am Pleon der Oniscidea (Crustacea, Isopoda) Zugleich ein Beitrag zur phylogenetischen Systematik der Landasseln. Zoologica, 48, 1–114.Google Scholar
  16. Erhard, F. (1997). Das pleonale Skelet-Muskel-System von Titanethes albus (Synocheta) und weiterer Taxa der Oniscidea (Isopoda), mit Schlussfolgerungen zur Phylogenie der Landasseln. Stuttgarter Beiträge zur Naturkunde A, 550, 1–70.Google Scholar
  17. Friedrich, M., & Tautz, D. (1995). Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature, 376, 165–167.CrossRefPubMedGoogle Scholar
  18. Friend, J. A., & Richardson, A. (1986). Biology of terrestrial amphipods. Annual Review of Entomology, 31, 25–48.CrossRefGoogle Scholar
  19. Fu, W.-L., Wilson, G. D. F., Jiang, D.-Y., Sun, Y.-L., Hao, W.-C., & Sun, Z.-Y. (2010). A new species of Protamphisopus Nicholls (Crustacea, Isopoda, Phreatoicidea) from Middle Triassic Luoping fauna of Yunnan Province, China. Journal of Paleontology, 84, 1003–1013.CrossRefGoogle Scholar
  20. Grimaldi, D., & Engel, M. S. (2005). Evolution of the insects. Cambridge: Cambridge University Press.Google Scholar
  21. Ho, S. Y. W., & Phillips, M. J. (2009). Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Systematic Biology, 58, 367–380.CrossRefPubMedGoogle Scholar
  22. Hornung, E. (2011). Evolutionary adaptation of oniscidean isopods to terrestrial life: structure, physiology and behavior. Terrestrial Arthropod Reviews, 4, 95–130.CrossRefGoogle Scholar
  23. Labandeira, C. C. (2005). Invasion of the continents: cyanobacterial crusts to tree-inhabiting arthropods. Trends in Ecology and Evolution, 20, 253–262.CrossRefPubMedGoogle Scholar
  24. Labandeira, C. C. (2006). The four phases of plant-arthropod associations in deep time. Geologica Acta, 4, 409–438.Google Scholar
  25. Lanfear, R., Calcott, B., Ho, S. Y. W., & Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701.CrossRefPubMedGoogle Scholar
  26. Lins, L. S. F., Ho, S. Y. W., Wilson, G. D. F., & Lo, N. (2012). Evidence for Permo-Triassic colonization of the deep sea by isopods. Biology Letters, 8, 979–982.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Michel-Salzat, A., & Bouchon, D. (2000). Phylogenetic analysis of mitochondrial LSU rRNA in oniscids. Comptes Rendus de l’Académie des Sciences Series III, 323, 1–11.Google Scholar
  28. Neraudeau, D. (2008). Nouveaux regards sur l'évolution et la biodiversité passée. In C. Grappin, P. Cardin, B. Goffé, L. Jolivet, & J.-P. Montagner (Eds.), Terre, planète mystérieuse (pp. 129–138). Paris: le Church Midi.Google Scholar
  29. Polz, H. (2005). Zwei neue asselarten (Crustacea, Isopoda, Scutocoxifera) aus den Plattenkalken von Brunn (Oberkimmeridgium, Mittlere Frankenalb). Archaeopteryx, 23, 67–81.Google Scholar
  30. Poulin, R. (1995). Evolutionary influences on body size in free-living and parasitic isopods. Biological Journal of the Linnean Society, 54, 231–244.CrossRefGoogle Scholar
  31. Raupach, M. J., Held, C., & Wagele, J. W. (2004). Multiple colonization of the deep sea by the Asellota (Crustacea: Peracarida: Isopoda). Deep Sea Research Part II: Topical Studies in Oceanography, 51, 1787–1795.CrossRefGoogle Scholar
  32. Raupach, M. J., Mayer, C., Malyutina, M., & Wagele, J.-W. (2009). Multiple origins of deep-sea Asellota (Crustacea: Isopoda) from shallow waters revealed by molecular data. Proceedings of the Royal Society of London B, 276, 799–808.CrossRefGoogle Scholar
  33. Rota-Stabelli, O., Daley, A. C., & Pisani, D. (2013). Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Current Biology, 23, 392–398.CrossRefPubMedGoogle Scholar
  34. Schmalfuss, H. (1989). Phylogenetics in Oniscidea. Monitore Zoologico Italiano, 4, 3–27.Google Scholar
  35. Schmalfuss, H. (2003). World catalog of terrestrial isopods (Isopoda: Oniscidea). Stuttgarter Beiträge zur Naturkunde A, 654, 1–341.Google Scholar
  36. Schmidt, C. (2008). Phylogeny of the terrestrial Isopoda (Oniscidea): a review. Arthropod Systematics and Phylogeny, 66, 191–226.Google Scholar
  37. Schram, F. R. (1970). Isopods from the Pennsylvanian of Illinois. Science, 169, 854–855.CrossRefPubMedGoogle Scholar
  38. Sfenthourakis S, Taiti S. (2015). Patterns of taxonomic diversity among terrestrial isopods. ZooKeys: 13.Google Scholar
  39. Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Sutton, S. L. (1972). Woodlice. Oxford: Pergamon Press.Google Scholar
  41. Suyama, M., Torrents, D., & Bork, P. (2006). PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research, 34, W609–W612.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Swofford, D. L. (1998). PAUP* 4.0, phylogenetic analysis using parsimony (*and other methods). Sunderland: Sinauer.Google Scholar
  43. Tabacaru, I., & Danielopol, D. L. (1996). Phylogénies des isopodes terrestres. Comptes Rendus de l’Académie des Sciences Series III, 319, 71–80.Google Scholar
  44. Tong, K. J., Duchêne, S., Ho, S. Y. W., & Lo, N. (2015). Comment on “Phylogenomics resolves the timing and pattern of insect evolution”. Science, 349, 487–487.CrossRefPubMedGoogle Scholar
  45. Vandel, A. (1943). Essai sur l’origine, l’évolution et la classification des Oniscoidea (isopodes terrestres). Bulletin biologique de France et de Belgique, Suppl., 30, 221–272.Google Scholar
  46. Vandel, A. (1964). De l’emploi des appareils respiratoires pour l’établissement d’une classification rationnelle des isopodes terrestres (Oniscoidea). Bulletin de la Société Zoologique de France, 89, 730–736.Google Scholar
  47. Vandel, A. (1965). Sur l’existence d’oniscoïdes très primitifs menant une vie aquatique et sur le polyphylétisme des isopodes terrestres. Annales de Spéléologie, 20, 489–518.Google Scholar
  48. Wägele, J.-W. (1989). Evolution und phylogenetisches System der Isopoda. Stand der Forschung und neue Erkenntnisse. Zoologica, 140, 1–262.Google Scholar
  49. Walossek, D. (1993). The Upper Cambrian Rehbachiella and the phylogeny of Branchiopoda and Crustacea. Oslo: Scandinavian University Press.Google Scholar
  50. Warburg, M. (1995). Growth and reproduction in a rare desert isopod: Porcellio barroisi (Oniscidea; Porcellionidae) from the Central Negev Mountains. Journal of Arid Environments, 31, 199–204.CrossRefGoogle Scholar
  51. Warburg, M. R. (1992). Reproductive patterns in three isopod species from the Negev Desert. Journal of Arid Environments, 22, 73–85.Google Scholar
  52. Wetzer, R. (2002). Mitochondrial genes and isopod phylogeny (Peracarida: Isopoda). Journal of Crustacean Biology, 22, 1–14.CrossRefGoogle Scholar
  53. Wilson, E. O. (2010). The diversity of life. Cambridge: Harvard University Press.Google Scholar
  54. Wilson, G. D. F. (2008). Global diversity of isopod crustaceans (Crustacea; Isopoda) in freshwater. In E. V. Balian, C. Lévêque, H. Segers, & K. Martens (Eds.), Freshwater animal diversity assessment (pp. 231–240). Netherlands: Springer.CrossRefGoogle Scholar
  55. Wilson, G. D. F. (2009). The phylogenetic position of the Isopoda in the Peracarida (Crustacea: Malacostraca). Arthropod Systematics and Phylogeny, 67, 159–198.Google Scholar
  56. Wilson, G. D. F., & Hessler, R. R. (1987). Speciation in the deep sea. Annual Review of Ecology and Systematics, 18, 185–207.CrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2017

Authors and Affiliations

  • Luana S. F. Lins
    • 1
    • 2
    • 3
    Email author
  • Simon Y. W. Ho
    • 1
  • Nathan Lo
    • 1
  1. 1.School of Life and Environmental SciencesThe University of SydneyCamperdownAustralia
  2. 2.Australian MuseumSydneyAustralia
  3. 3.School of Biological SciencesWashington State UniversityPullmanUSA

Personalised recommendations