Skip to main content
Log in

Cryptic and pseudo-cryptic diversity in the world’s most common bark beetle—Hypothenemus eruditus

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Hypothenemus eruditus is regarded as the world’s most common bark beetle, collected from numerous host plants on all forested continents. Previous taxonomic treatments remark that the species is morphologically variable and difficult to identify, but to date, no study has analyzed molecular data to investigate possible cryptic or seemingly cryptic (pseudo-cryptic) diversity in this species. We sequenced 216 specimens matching or closely resembling the currently accepted description of H. eruditus for a mitochondrial (COI) and a nuclear marker (28S), and scored six morphological characters. We also compared the morphology of H. eruditus syntypes and type material of 26 synonymized species with the sequenced material. The sequenced material grouped in 21 operational taxonomic units (OTUs) supported by both molecular and morphological data, 17 of which were part of an apparent H. eruditus species complex. Another nine cryptic OTUs, distinguishable only by molecular data, were also included in the complex. Only one of the OTUs revealed a morphological match with the H. eruditus syntypes. The 26 synonymized species were split into 14 tentative morphs, 11 of which did not match the H. eruditus syntypes. We argue that many of our sequenced OTUs deserve species status, and that many species synonymized under H. eruditus should be resurrected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Andersen, H. F., Jordal, B. H., Kambestad, M., & Kirkendall, L. R. (2012). Improbable but true: the invasive inbreeding ambrosia beetle Xylosandrus morigerus has generalist genotypes. Ecology and Evolution, 2(1), 247–257.

    Article  PubMed  PubMed Central  Google Scholar 

  • Avtzis, D. N., Arthofer, W., & Stauffer, C. (2008). Sympatric occurrence of diverged mtDNA lineages of Pityogenes chalcographus (Coleoptera, Scolytinae) in Europe. Biological Journal of the Linnean Society, 94(2), 331–340.

    Article  Google Scholar 

  • Bañón, R., Arronte, J. C., Vázquez-Dorado, S., Del Río, J. L., & de Carlos, A. (2013). DNA barcoding of the genus Lepidion (Gadiformes: Moridae) with recognition of Lepidion eques as a junior synonym of Lepidion lepidion. Molecular Ecology Resources, 13(2), 189–199.

    Article  PubMed  Google Scholar 

  • Baum, D. A., & Shaw, K. L. (1995). Genealogical perspectives on the species problem. Monographs in Systematic Botany from the Missouri Botanical Garden, 53, 289–303.

    Google Scholar 

  • Beaver, R. A. (1979). Non-equilibrium “island” communities. A guild of tropical bark beetles. Journal of Animal Ecology, 48, 987–1002.

    Article  Google Scholar 

  • Blair, C. P., Abrahamson, W. G., Jackman, J. A., & Tyrrell, L. (2005). Cryptic speciation and host-race formation in a purportedly generalist tumbling flower beetle. Evolution, 59, 304–316.

    Article  PubMed  Google Scholar 

  • Blakemore, R., Kupriyanova, E., & Grygier, M. (2010). Neotypification of Drawida hattamimizu Hatai, 1930 (Annelida, Oligochaeta, Megadrili, Moniligastridae) as a model linking mtDNA (COI) sequences to an earthworm type, with a response to the ‘Can of Worms’ theory of cryptic species. ZooKeys, 41, 1–29.

    Article  Google Scholar 

  • Blandford, W. F. H. (1894). IV. The Rhynchophorous Coleoptera of Japan. Part III. Scolytidae. Trans. Ent. Soc. London, 1894, 53–141.

    Google Scholar 

  • Bright, D. E., & Peck, S. B. (1998). Scolytidae from the Galápagos Islands, Ecuador, with descriptions of four new species, new distribution records, and a key to species (Coleoptera: Scolytidae). Koleopterologishe Rundschau, 68, 233–252.

    Google Scholar 

  • Bright, D. E., & Skidmore, R. E. (1997). A catalog of Scolytidae and Platypodidae (Coleoptera), supplement 1 (1990–1994). Ottawa: NRC Research Press.

    Google Scholar 

  • Bright, D. E., & Skidmore, R. E. (2002). A catalog of Scolytidae and Platypodidae (Coleoptera), supplement 2 (1995–1999). Ottawa: NRC Research Press.

    Google Scholar 

  • Brower, A. V. Z. (2010). Alleviating the taxonomic impediment of DNA barcoding and setting a bad precedent: names for ten species of ‘Astraptes fulgerator’ (Lepidoptera: Hesperiidae: Eudaminae) with DNA-based diagnoses. Systematics and Biodiversity, 8(4), 485–491.

    Article  Google Scholar 

  • Browne, F. G. (1961). The biology of Malayan Scolytidae and Platypodidae. Malayan Forest Records, 22, 1–255.

    Google Scholar 

  • Cai, Y.-W., Cheng, X.-Y., Xu, R.-M., Duan, D.-H., & Kirkendall, L. R. (2008). Genetic diversity and biogeography of red turpentine beetle Dendroctonus valens in its native and invasive regions. Insect Sci., 15(4), 291–301.

    Article  CAS  Google Scholar 

  • Castillo, A., Infante, F., López, G., Trujillo, J., Kirkendall, L. R., & Vega, F. E. (2004). Laboratory parasitism by Phymastichus coffea (Hymenoptera: Eulophidae) upon non-target bark beetles associated with coffee plantations. Florida Entomologist, 87(3), 274–277.

    Article  Google Scholar 

  • Cognato, A. I., & Sperling, F. A. H. (2000). Phylogeny of Ips DeGeer species (Coleoptera: Scolytidae) inferred from mitochondrial cytochrome oxidase I DNA sequence. Molecular Phylogenetics and Evolution, 14(3), 445–460.

    Article  CAS  PubMed  Google Scholar 

  • Cognato, A. I., & Sun, J. H. (2007). DNA based cladograms augment the discovery of a new Ips species from China (Coleoptera: Curculionidae: Scolytinae). Cladistics, 23(6), 539–551.

    Google Scholar 

  • Cognato, A. I., Seybold, S. J., & Sperling, F. A. H. (1999). Incomplete barriers to mitochondrial gene flow between pheromone races of the North American pine engraver, Ips pini (Say) (Coleoptera, Scolytidae). Proceedings of the Royal Society of London Series B-Biological Sciences, 266(1431), 1843–1850.

    Article  Google Scholar 

  • Cognato, A. I., Harlin, A. D., & Fisher, M. L. (2003). Genetic structure among pinyon pine beetle populations (Scolytinae: Ips confusus). Environmental Entomology, 32(5), 1262–1270.

    Article  Google Scholar 

  • Cognato, A. I., Barc, N., Philip, M., Mech, R., Smith, A. D., Galbraith, E., Storer, A. J., & Kirkendall, L. R. (2010). The native and introduced bark and ambrosia beetles of Michigan (Curculionidae: Scolytinae). Great Lakes Entomologist, 42(3–4), 101–120.

    Google Scholar 

  • De Abrau, R. L. S., de Aráujo Ribeiro, G., Vianez, B. F., & Sales-Campos, C. (2012). Insects of the subfamily Scolytinae (Insecta: Coleoptera, Curculionidae) collected with pitfall and ethanol traps in primary forests of Central Amazonia. Psyche. doi:10.1155/2012/480520.

  • Dole, S. A., Jordal, B. H., & Cognato, A. I. (2010). Polyphyly of Xylosandrus Reitter inferred from nuclear and mitochondrial genes (Coleoptera: Curculionidae: Scolytinae). Molecular Phylogenetics and Evolution, 54(3), 773–782.

    Article  PubMed  Google Scholar 

  • Dowton, M., & Austin, A. D. (1998). Phylogenetic relationships among the microgastroid wasps (Hymenoptera: Braconidae): combined analysis of 16S and 28S rDNA genes and morphological data. Molecular Phylogenetics and Evolution, 10, 354–366.

    Article  CAS  PubMed  Google Scholar 

  • Duan, Y., Kerdelhue, C., Ye, H., & Lieutier, F. (2004). Genetic study of the forest pest Tomicus piniperda (Col., Scolytinae) in Yunnan province (China) compared to Europe: new insights for the systematics and evolution of the genus Tomicus. Heredity, 93(5), 416–422.

    Article  CAS  PubMed  Google Scholar 

  • Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggers, H. (1944). Neue Borkenkäfer (Col., Scolytidae) aus Afrika. Rev. Zool. Bot. Afr., 38, 92–98.

    Google Scholar 

  • Eichhoff, W. J. (1878). Ratio, descripto, emendatio eorum Tomicinorum qui sunt in Dr. Medin. Chapuisi et authoris ipsius collectionibus et quous praeterea recognovit. Societe Entomologique de Liege, Memoires, 2(8), 1–531.

    Google Scholar 

  • Fabricius, J. C. (1801). Systema eleutheratorum, secundum ordines, genera, species, adjectis synonymis, locis observationibut, descriptionibus. Kiliae, Bibliopol. Acad, 1-2, 368–378–395.

    Google Scholar 

  • Ferrari, J. A. (1867). Die Forst- und Baumzuchtschädlichen Borkenkäfer (Tomicides Lac.) aus der Familie der Holzverderber (Scolytides Lac.), mit besonderer Berücksichtigung vorzüglich der europäischen Formen, und der Sammulung des. k. k. zoologischen Kabinetes in Wien. Wien, Austria.

  • Flechtmann, C. A. H., Ottati, A. L. T., & Berisford, C. W. (2001). Ambrosia and bark beetles (Scolytidae: Coleoptera) in pine and eucalypt stands in southern Brazil. Forest Ecology and Management, 142, 183–191.

    Article  Google Scholar 

  • Gauthier, N. (2010). Multiple cryptic genetic units in Hypothenemus hampei (Coleoptera: Scolytinae): evidence from microsatellite and mitochondrial DNA sequence data. Biological Journal of the Linnean Society, 101, 113–129.

    Article  Google Scholar 

  • Gohli, J., Selvarajah, T., Kirkendall, L. R., & Jordal, B. H. (2016). Globally distributed Xyleborus species reveal recurrent intercontinental dispersal in a landscape of ancient worldwide distributions. BMC Evolutionary Biology. doi:10.1186/s12862-016-0610-7.

  • Gray, B. (1974). Observations on insect flight in a tropical forest plantation. Zeitschrift für Angewandte Entomologie, 75(1–4), 178–186.

    Google Scholar 

  • Hagedorn, J. M. (1912). Borkenkäfer (Ipidae) Welche in Kautschukbäumen leben. Review Zoologique Africaine, 1(3), 336–346.

    Google Scholar 

  • Halperin, J. (1990). Arthropod fauna and main insect pests of plane trees in Israel. Phytoparasitica, 18(4), 309–319.

    Article  Google Scholar 

  • Halperin, J., & Holzschuh, C. (1984). Contribution to the knowledge of bark beetles (Coleoptera: Scolytidae) and associated organisms in Israel. Israel Journal of Entomology, 18, 21–37.

    Google Scholar 

  • Hebert, P. D., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Series B-Biological Sciences, 270(1512), 313–321.

    Article  CAS  Google Scholar 

  • Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H., & Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 101, 14812–14817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-Triana, L. M., Prosser, S. W., Rodríguez-Perez, M. A., Chaverri, L. G., Hebert, P. D. N., & Ryan Gregory, T. (2014). Recovery of DNA barcodes from blackfly museum specimens (Diptera: Simuliidae) using primer sets that target a variety of sequence lengths. Molecular Ecology Resources, 14(3), 508–518.

    Article  PubMed  Google Scholar 

  • Hopkins, A. D. (1915). Classification of the Cryphalinae, with descriptions of new genera and species. United States Department of Agriculture Report, 99, 1–75.

    Google Scholar 

  • Hulcr, J., Atkinson, T. H., Cognato, A. I., Jordal, B. H., & McKenna, D. D. (2015). Morphology, taxonomy, and phylogenetics of bark beetles. In F. E. Vega & R. W. Hofstetter (Eds.), Bark beetles. Biology and ecology of native and invasive species (pp. 41–84). USA: Academic Press.

    Google Scholar 

  • Jordal, B. H., & Hewitt, G. M. (2004). The origin and radiation of Macaronesian beetles breeding in Euphorbia: the relative importance of multiple data partitions and population sampling. Systematic Biology, 53(5), 711–734.

    Article  PubMed  Google Scholar 

  • Jordal, B. H., & Kambestad, M. (2014). DNA barcoding of bark and ambrosia beetles reveals excessive NUMTs and consistent east-west divergence across Palearctic forests. Molecular Ecology Resources, 14(1), 7–17.

    Article  CAS  PubMed  Google Scholar 

  • Jordal, B. H., & Kirkendall, L. R. (1998). Ecological relationships of a guild of tropical beetles breeding in Cecropia petioles in Costa Rica. Journal of Tropical Ecology, 14, 153–176.

    Article  Google Scholar 

  • Jordal, B. H., Normark, B. B., Farrell, B. D., & Kirkendall, L. R. (2002). Extraordinary haplotype diversity in haplodiploid inbreeders: phylogenetics and evolution of the bark beetle genus Coccotrypes. Molecular Phylogenetics and Evolution, 23(2), 171–188.

    Article  CAS  PubMed  Google Scholar 

  • Jordal, B. H., Kirkendall, L. R., & Harkestad, K. (2004). Phylogeny of a Macaronesian radiation: host-plant use and possible cryptic speciation in Liparthrum bark beetles. Molecular Phylogenetics and Evolution, 31(2), 554–571.

    Article  CAS  PubMed  Google Scholar 

  • Kambestad, M. (2011). Coexistence of habitat generalists in Neotropical petiole-breeding bark beetles: molecular evidence reveals cryptic diversity, but no niche segregation. MSc thesis: University of Bergen, Bergen, Norway.

    Google Scholar 

  • Kamnerdratana, P. Y. (1987). The economically significant insect pests of trees and timber in Thailand. In E. D. Guzman & S. T. Nuhamara (Eds.), Forest pests and diseases in Southeast Asia. Bogor: Biotrop Special Publication No. 26.

    Google Scholar 

  • Kangkamanee, T., Sittichaya, W., Ngampongsai, A., Permkam, S., & Beaver, R. (2011). Wood-boring beetles (Coleoptera: Bostrichidae, Curculionidae; Platypodinae and Scolytinae) infesting rubberwood sawn timber in southern Thailand. Journal of Forest Research, 16(4), 302–308.

    Article  CAS  Google Scholar 

  • Kerdelhué, C., Roux-Morabito, G., Forichon, J., Chambon, J.-M., Robert, A., & Lieutier, F. (2002). Population genetic structure of Tomicus piniperda L. (Curculionidae: Scolytinae) on different pine species and validation of T. destruens (Woll.) Molecular Ecology, 11(3), 483–494.

    Article  PubMed  Google Scholar 

  • Kirkendall, L. R. (1983). The evolution of mating systems in bark and ambrosia beetles (Coleoptera, Scolytidae and Platypodidae). Zoological Journal of the Linnean Society, 77, 293–352.

    Article  Google Scholar 

  • Kirkendall, L. R. (1993). Ecology and evolution of biased sex ratios in bark and ambrosia beetles. In D. L. Wrensch & M. A. Ebbert (Eds.), Evolution and diversity of sex ratio in insects and mites (pp. 234–345). New York: Chapman & Hall.

    Google Scholar 

  • Kirkendall, L. R., & Faccoli, M. (2010). Bark beetles and pinhole borers (Curculionidae, Scolytinae, Platypodinae) alien to Europe. ZooKeys, 56, 227–251.

    Article  Google Scholar 

  • Knutsen, I. L. (2008). Investigating the Hypothenemus eruditus Westwood species complex (Coleoptera: Curculionidae: Scolytinae) in Costa Rica using DNA barcoding (CO1 and EF-1a), morphology and host usage and geographical distribution. MSc thesis, University of Bergen, Bergen, Norway.

  • Kohlmayr, B., Riegler, M., Wegensteiner, R., & Stauffer, C. (2002). Morphological and genetic identification of the three pine pests of the genus Tomicus (Coleoptera, Scolytidae) in Europe. Agricultural and Forest Entomology, 4(2), 151–157.

    Article  Google Scholar 

  • Kvist, S. (2013). Barcoding in the dark?: a critical view of the sufficiency of zoological DNA barcoding databases and a plea for broader integration of taxonomic knowledge. Molecular Phylogenetics and Evolution, 69(1), 39–45.

    Article  CAS  PubMed  Google Scholar 

  • Kvist, S., Oceguera-Figueroa, A., Siddall, M. E., & Erséus, C. (2010). Barcoding, types and the Hirudo files: using information content to critically evaluate the identity of DNA barcodes. Mitochondrial DNA, 21(6), 198–205.

    Article  CAS  PubMed  Google Scholar 

  • LeConte, J. L. (1860). Report upon insects collected on the survey. Reports of explorations and surveys for a railroad route from the Mississippi River to the Pacific Ocean 9(1), 1–72.

  • Mitchell, A., & Maddox, C. (2010). Bark beetles (Coleoptera: Curculionidae: Scolytinae) of importance to the Australian macadamia industry: an integrative taxonomic approach to species diagnostics. Australian Journal of Entomology, 49, 104–113.

    Article  Google Scholar 

  • Mutanen, M., Kekkonen, M., Prosser, S. W. J., Hebert, P. D. N., & Kaila, L. (2015). One species in eight: DNA barcodes from type specimens resolve a taxonomic quagmire. Molecular Ecology Resources, 15(4), 967–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordlinger, H. (1856). Nachtrage zur Ratzeburg’s Forstinsekten. Stuttgart: Germany.

    Google Scholar 

  • Normark, B. B., Jordal, B. H., & Farrell, B. D. (1999). Origin of a haplodiploid beetle lineage. Proceedings of the Royal Society of London Series B-Biological Sciences, 266, 2253–2259.

    Article  Google Scholar 

  • Nylander, J. A. A. (2004). Mr Model test. Version 2. Uppsala University: Evolutionary Biology Centre.

    Google Scholar 

  • Peck, S. B. (2006). The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): diversity and distribution. Insecta Mundi, 20(3–4), 165–209.

    Google Scholar 

  • Petersen, R. H., & Hughes, K. W. (1999). Species and speciation in mushrooms: development of a species concept poses difficulties. Bioscience, 49(6), 440–452.

    Article  Google Scholar 

  • Pjatnitskii, G. K. (1929). Hypothenemus lezhavai n. sp. Lezhava Izd. Narod. Kom. Zem. Gruzii, 1929, 1–15.

    Google Scholar 

  • Prosser, S. W. J., deWaard, J. R., Miller, S. E., & Hebert, P. D. N. (2016). DNA barcodes from century-old type specimens using next-generation sequencing. Molecular Ecology Resources, 16(2), 487–497.

    Article  CAS  PubMed  Google Scholar 

  • Puillandre, N., Macpherson, E., Lambourdière, J., Cruaud, C., Boisselier-Dubayle, M.-C., & Samadi, S. (2011). Barcoding type specimens helps to identify synonyms and an unnamed new species in Eumunida Smith, 1883 (Decapoda: Eumunididae). Invertebrate Systematics, 25(4), 322–333.

    Article  CAS  Google Scholar 

  • Rambaut, A., Suchard, M. A., Xie, D., & Drummond, A. J. (2014). Tracer v1.6. Available from http://beast.bio.ed.ac.uk/Tracer.

  • Romón, P., Zhou, X., Iturrondobeitia, J. C., Wingfield, M. J., & Goldarazena, A. (2007). Ophiostoma species (Ascomycetes: Ophiostomatales) associated with bark beetles (Coleoptera: Scolytinae) colonizing Pinus radiata in northern Spain. Canadian Journal of Microbiology, 53(6), 756–767.

    Article  PubMed  Google Scholar 

  • Romón, P., Troya, M., Fernández de Gamarra, M. E., Eguzkitza, A., Iturrondobeitia, J. C., & Goldarazena, A. (2008). Fungal communities associated with pitch canker disease of Pinus radiata caused by Fusarium circinatum in northern Spain: association with insects and pathogen-saprophyte antagonistic interactions. Canadian Journal of Plant Pathology, 30(2), 241–253.

    Article  Google Scholar 

  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hӧhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saez, A. G., & Lozano, E. (2005). Body doubles. Nature, 433, 111–111.

    Article  CAS  PubMed  Google Scholar 

  • Schedl, K. E. (1939). Scolytidae und Platypodidae. 47 Beitrag. Tijdschrift voor Entomologie, 82, 30–53.

    Google Scholar 

  • Schedl, K. E. (1951). Neotropische Scolytidae IV. 112 Beitrag. Dusenia, 2(2), 71–130.

    Google Scholar 

  • Schedl, K. E. (1957). Scolytoidea nouveaux du Congo Belge, II. Mission R. Mayne-K.E. Schedl 1952. Annales du Musee Royale du Congo Belge Tervuren (Belgique), Ser. 8, Sciences Zoologiques, 56, 1–162.

  • Schedl, K. E. (1958). Fauna Argentinensis, VII. 136 Beitrag. Acta Zoologica Lilloana, 16, 33–46.

    Google Scholar 

  • Schedl, K. E. (1959). A check list of the Scolytidae and Platypodidae (Coleoptera) of Ceylon with descriptions of new species and biological notes. Transactions of the Royal Entomological Society of London, 111(15), 469–516.

    Article  Google Scholar 

  • Schedl, K. E. (1978). Neotropische Scolytoidea, XIV (Coleoptera). 335 Beitrag. Entomologische Abhandlungen Staatliches Museum fur Tierkunde in Dresden, 41(8), 291–309.

    Google Scholar 

  • Schlick-Steiner, B. C., Steiner, F. M., Seifert, B., Stauffer, C., Christian, E., & Crozier, R. H. (2010). Integrative taxonomy: a multisource approach to exploring biodiversity. Annual Review of Entomology, 55, 421–438.

    Article  CAS  PubMed  Google Scholar 

  • Sequeira, A. S., Normark, B. B., & Farrell, B. D. (2000). Evolutionary assembly of the conifer fauna: distinguishing ancient from recent associations in bark beetles. Proceedings of the Royal Society of London Series B-Biological Sciences, 267, 2359–2366.

    Article  CAS  Google Scholar 

  • Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87, 651–701.

    Article  CAS  Google Scholar 

  • Smith, M. A., Rodriguez, J. J., Whitfield, J. B., Deans, A. R., Janzen, D. H., Hallwachs, W., & Hebert, P. D. N. (2008). Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proceedings of the National Academy of Sciences, 105, 12359–12364.

    Article  CAS  Google Scholar 

  • Spiedel, W., Hausmann, A., Muller, G. C., Kravchenko, V., Mooser, J., Witt, T. J., Khallaayoune, K., Prosser, S., & Hebert, P. D. N. (2015). Taxonomy 2.0: sequencing of old type specimens supports the description of two new species of the Lasiocampa decolorata group from Morocco (Lepidoptera, Lasiocampidae). Zootaxa, 3999(3), 401–412.

    Article  Google Scholar 

  • Stone, C., Goodyer, G., Sims, K., Penman, T., & Carnegie, A. (2010). Beetle assemblages captured using static panel traps within New South Wales pine plantations. Australian Journal of Entomology, 49, 304–316.

    Article  Google Scholar 

  • Swofford, D. L. (2002). PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland: Sinauer Associates.

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: moleular evolutionary genetics analyses version 6.0. Molecular Biology and Evolution, 30, 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor, J. W., Jacobson, D. J., Kroken, S., Kasuga, T., Geiser, D. M., Hibbett, D. S., & Fisher, M. C. (2000). Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology, 31(1), 21–32.

    Article  CAS  PubMed  Google Scholar 

  • Vázquez, L. L., Tur, N., & Monteagudo, S. (1993). Insects of the family Scolytidae (Coleoptera) which attack coffee in Cuba. Revista de Proteccíon Vegetal, 8(1), 27–30.

    Google Scholar 

  • Vega, F. E., Davis, A. P., & Jaramillo, J. (2012). From forest to plantation? Obscure articles reveal alternative host plants for the coffee berry borer, Hypothenemus hampei (Coleoptera: Curculionidae). Biological Journal of the Linnean Society, 107(1), 86–94.

    Article  Google Scholar 

  • Vega, F. E., Infante, F., & Johnson, A. J. (2015). The genus Hypothenemus, with emphasis on H. hampei, the coffee berry borer. In F. E. Vega & R. W. Hofstetter (Eds.), Bark beetles. Biology and ecology of native and invasive species (pp. 427–494). USA: Academic Press.

    Google Scholar 

  • Wandeler, P., Hoeck, P. E. A., & Keller, L. F. (2007). Back to the future: museum specimens in population genetics. Trends in Ecology & Evolution, 22(12), 634–642.

    Article  Google Scholar 

  • Westwood, J. O. (1836). Description of a minute Coleopterous insect, forming the type of a new subgenus allied to Tomicus, with some observations upon the affinities of the Xylophaga. Transactions of the Entomological Society of London, 1, 34–36.

    Article  Google Scholar 

  • Wood, S. L. (1954). A revision of North American Cryphalini (Scolytidae, Coleoptera). University of Kansas Science Bulletin, 36, 959–1089.

    Google Scholar 

  • Wood, S. L. (1960). Insects of Micronesia, Coleoptera: Platypodidae and Scolytidae. Insects of Micronesia, 18, 1–73.

    Google Scholar 

  • Wood, S. L. (1971). New records and species of neotropical bark beetles (Scolytidae: Coleoptera). Brigham Young University science bulletin. Biological series, 15(3), 1–54.

  • Wood, S. L. (1972). New synonymy in the bark beetle tribe Cryphalini (Coleoptera: Scolytidae). Great Basin Naturalist, 32(1), 40–54.

    Google Scholar 

  • Wood, S. L. (1974). New synonymy and records of American bark beetles (Coleoptera: Scolytidae). Great Basin Naturalist, 34(4), 277–290.

    Google Scholar 

  • Wood, S. L. (1977a). Introduced and exported American Scolytidae (Coleoptera). Great Basin Naturalist, 37(1), 67–74.

    Google Scholar 

  • Wood, S. L. (1982). The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs, 6, 1–1359.

    Google Scholar 

  • Wood, S. L. (1989). Nomenclatural changes and new species of Scolytidae (Coleoptera), part IV. Great Basin Naturalist, 49(2), 167–185.

    Google Scholar 

  • Wood, S. L. (1992). Nomenclatural changes in Scolytidae and Platypodidae (Coleoptera). Great Basin Naturalist, 52(1), 89–92.

    Google Scholar 

  • Wood, S. L. (2007). Bark and ambrosia beetles of South America (Coleoptera, Scolytidae). Provo: Monte L. Bean Life Science Museum, Brigham Young University.

    Google Scholar 

  • Wood, S. L., & Bright, D. E. (1987). A catalog of Scolytidae and Platypodidae (Coleoptera), part 1: bibliography. Great Basin Naturalist Memoirs, 11, 1–696.

    Google Scholar 

  • Wood, S. L., & Bright, D. E. (1992). A catalog of Scolytidae and Platypodidae (Coleoptera), part 2: taxonomic index volume A. Great Basin Naturalist Memoirs, 13, 1–833.

    Google Scholar 

Download references

Acknowledgements

This research was funded by grants 214232/F20 and 170565/V40 from the Research Council of Norway, a grant from the Meltzer Research Fund to BHJ (2009), and a student grant from the Meltzer Research Fund to MK (2010). We thank Kamilla Kambestad for drawings of morphological characters, and curators at the natural history museums in Vienna, Oxford, London, and Paris for organizing specimen loans. Two anonymous reviewers provided valuable comments on an earlier draft of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Kambestad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kambestad, M., Kirkendall, L.R., Knutsen, I.L. et al. Cryptic and pseudo-cryptic diversity in the world’s most common bark beetle—Hypothenemus eruditus . Org Divers Evol 17, 633–652 (2017). https://doi.org/10.1007/s13127-017-0334-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-017-0334-6

Keywords

Navigation