Organisms Diversity & Evolution

, Volume 17, Issue 2, pp 497–508 | Cite as

Evolution and diversity of ram-suction feeding in damselfishes (Pomacentridae)

  • Damien Olivier
  • Laura Gajdzik
  • Eric Parmentier
  • Bruno Frédérich
Original Article


The cerato-mandibular (c-md) ligament is a synapomorphy within Pomacentridae that creates a tight link between the lower jaws and the hyoid bars. However, this morphological trait has been secondarily lost in multiple lineages during evolution. A previous study revealed that the loss of this trait acted as a release of evolutionary constraints, leading to a cascade of morphological changes such elongated buccal jaws and a slender body. Ecomorphological interpretations suggested the loss of the c-md ligament has ultimately led to a new adaptive peak in zooplanktivory through an optimization of the ram feeding mode associated with a specialization in pelagic feeding. Here, we tested these hypotheses by comparing functional and diet diversity between damselfish species with and without the c-md ligament. Although species lacking the c-md ligament presented a conserved kinematic pattern resulting from high ram and low suction performances, our results did not support an optimization of the ram feeding mode. Indeed, some species with the c-md ligament showed the same or exceeded the ram performance of species without the c-md ligament. The species with the c-md ligament had a more diverse kinematic pattern exploring the entire ram-suction functional range in damselfishes. Finally, our results did not show any diet variations associated with the loss of the c-md ligament. Our study furthers the understanding of how a morphological trait has shaped, by its presence or absence, the ecomorpho-functional diversification of Pomacentridae.


Cerato-mandibular ligament Evolutionary morphology Specialization Reef fishes Zooplanktivory 



We thank the two anonymous reviewers for their helpful comments. We thank Dr. Roi Holzman for making us welcome at the Interuniversity Institute for Marine Sciences, Eilat (IUI). DO was a PhD student of FRIA. BF is a postdoctoral fellow at the Belgian Science Policy (BELSPO). LG is a research fellow of F.R.S-F.N.R.S. This research was supported by the FRFC grants from the F.R.S.-FNRS (no. 2.4.535.10) and by the Association of European Marine Biological Laboratories (ASSEMBLE).

Supplementary material

13127_2017_329_MOESM1_ESM.pdf (42 kb)
Online Resource 1 Details on the measurement of the suction index created by Carroll et al. (2004). (PDF 42 kb)
13127_2017_329_MOESM2_ESM.pdf (76 kb)
Online Resource 2 Table with the proportions of free-living and fixed prey in the stomach contents of 61 damselfishes species. (PDF 76 kb)
13127_2017_329_MOESM3_ESM.pdf (62 kb)
Online Resource 3 Table with the proportions of calanoid copepods in the stomach contents of 19 zooplanktivorous damselfish species. (PDF 62 kb)


  1. Aguilar-Medrano, R., Frédérich, B., De Luna, E., & Balart, E. F. (2011). Patterns of morphological evolution of the cephalic region in damselfishes (Perciformes: Pomacentridae) of the Eastern Pacific. Biological Journal of the Linnean Society, 102(3), 593–613. doi: 10.1111/j.1095-8312.2010.01586.x.CrossRefGoogle Scholar
  2. Alexander, R. M. (1969). Mechanics of the feeding action of a cyprinid fish. Journal of Zoology (London), 159, 1–15.CrossRefGoogle Scholar
  3. Allen, G. R. (1991). Damselfishes of the world. Melle: Aquarium Systems.Google Scholar
  4. Arnold, E. N. (1995). Identifying the effects of history on adaptation: origins of different sand-diving techniques in lizards. Journal of Zoology (London), 235, 351–388.CrossRefGoogle Scholar
  5. Barel, C. D. N. (1983). Towards a constructional morphology of cichlid fishes (Teleostei: Perciformes). Netherlands Journal of Zoology, 33, 357–424.CrossRefGoogle Scholar
  6. Bellwood, D. R., & Wainwright, P. C. (2001). Locomotion in labrid fishes: implications for habitat use and cross-shelf biogeography on the Great Barrier Reef. Coral Reefs, 20(2), 139–150. doi: 10.1007/s003380100156.CrossRefGoogle Scholar
  7. Bellwood, D. R., Wainwright, P. C., Fulton, C. J., & Hoey,  A. S. (2006). Functional versatility supports coral reef biodiversity. Proceedings of the Royal Society B, 273, 101–107. doi: 10.1098/rspb.2005.3276.
  8. Bernardi, G. (2011). Monophyletic origin of brood care in damselfishes. Molecular Phylogenetics and Evolution, 59, 245–248.CrossRefPubMedGoogle Scholar
  9. Buskey, E. J., & Hartline, D. K. (2003). High-speed video analysis of the escape responses of the copepod Acartia tonsa to Shadows. The Biological Bulletin, 204, 28–37.Google Scholar
  10. Carroll, A. M., Wainwright, P. C., Huskey, S. H., Collar, D. C., & Turingan, R. G. (2004). Morphology predicts suction feeding performance in centrarchid fishes. Journal of Experimental Biology, 207, 3873–3881. doi: 10.1242/jeb.01227.
  11. Collar, D. C., & Wainwright, P. C. (2006). Discordance between morphological and mechanical diversity in the feeding mechanism of centrarchid fishes. Evolution, 60(12), 2575–2584. doi: 10.1111/j.0014-3820.2006.tb01891.x.
  12. Colleye, O., & Parmentier, E. (2012). Overview on the diversity of sounds produced by Clownfishes ( Pomacentridae ): importance of acoustic signals in their peculiar way of life. PLoS ONE, 7(11). doi: 10.1371/journal.pone.0049179.
  13. Cooper, W. J., & Westneat, M. W. (2009). Form and function of damselfish skulls: rapid and repeated evolution into a limited number of trophic niches. BMC Evolutionary Biology, 9(24), 1–17. doi: 10.1186/1471-2148-9-24.
  14. Cooper, W. J., Carter, C. B., Conith, A. J., Rice, A. N., & Westneat, M. W. (2016). The evolution of jaw protrusion mechanics has been tightly coupled to bentho-pelagic divergence in damselfishes (Pomacentridae). Journal of Experimental Biology. doi: 10.1242/jeb.143115.Google Scholar
  15. Coughlin, D. J., & Strickler, J. R. (1990). Zooplankton capture by a coral reef fish: an adaptive response to evasive prey. Environmental Biology of Fishes, 29, 35–42.Google Scholar
  16. Emerson, S. B. (1988). Testing for historical patterns of change: a case study with frog pectoral girdles. Paleobiology, 14, 174–186.CrossRefGoogle Scholar
  17. Emery, A. R. (1973). Comparative ecology and functional osteology of fourteen species of damselfish (Pisces: Pomacentridae) at Alligator Reef, Florida Keys. Bulletin of Marine Science, 23(3), 649–770.Google Scholar
  18. Eschmeyer, W. N., Fricke, R., & van der Laan, R. (2016). Catalog of fishes: genera, species, references (
  19. Frédérich, B., & Parmentier, E. (2016). Biology of damselfishes. Boca Raton: CRC Press.CrossRefGoogle Scholar
  20. Frédérich, B., Parmentier, E., & Vandewalle, P. (2006). A preliminary study of development of the buccal apparatus in Pomacentridae (Teleostei, Perciformes). Animal Biology, 56(3), 351–372. doi: 10.1163/157075606778441831.CrossRefGoogle Scholar
  21. Frédérich, B., Adriaens, D., & Vandewalle, P. (2008). Ontogenetic shape changes in Pomacentridae (Teleostei, Perciformes) and their relationships with feeding strategies: a geometric morphometric approach. Biological Journal of the Linnean Society, 95(1), 92–105. doi: 10.1111/j.1095-8312.2008.01003.x.CrossRefGoogle Scholar
  22. Frédérich, B., Fabri, G., Lepoint, G., Vandewalle, P., & Parmentier, E. (2009). Trophic niches of thirteen damselfishes (Pomacentridae) at the Grand Récif of Toliara, Madagascar. Ichthyological Research, 56(1), 10–17. doi: 10.1007/s10228-008-0053-2.CrossRefGoogle Scholar
  23. Frédérich, B., Sorenson, L., Santini, F., Slater, G. J., & Alfaro, M. E. (2013). Iterative ecological radiation and convergence during the evolutionary history of damselfishes (Pomacentridae). The American Naturalist, 181(1), 94–113. doi: 10.1086/668599.CrossRefPubMedGoogle Scholar
  24. Frédérich, B., Olivier, D., Litsios, G., Alfaro, M. E., & Parmentier, E. (2014). Trait decoupling promotes evolutionary diversification of the trophic and acoustic system of damselfishes. Proceedings of the Royal Society B, 281, 20141047. doi: 10.1098/rspb.2014.1047.
  25. Frédérich, B., Cooper, W. J., & Aguilar-Medrano, R. (2016a). Ecomorphology and iterative ecological radiation of damselfishes. In B. Frédérich & E. Parmentier (Eds.), Biology of damselfishes (pp. 183–203). Boca Raton: CRC press.CrossRefGoogle Scholar
  26. Frédérich, B., Olivier, D., Gajdzik, L., & Parmentier, E. (2016b). Trophic ecology of damselfishes. In B. Frédérich & E. Parmentier (Eds.), Biology of damselfishes (pp. 153–167). Boca Raton: CRC press.CrossRefGoogle Scholar
  27. Friel, J. P., & Wainwright, P. C. (1999). Evolution of complexity in motor patterns and jaw musculature of tetraodontiform fishes. Journal of Experimental Biology, 202, 867–880.Google Scholar
  28. Gajdzik, L., Parmentier, E., Sturaro, N., & Frédérich, B. (2016). Trophic specializations of damselfishes are tightly associated with reef habitats and social behaviours. Marine Biology, 163(12), 249.CrossRefGoogle Scholar
  29. Greene, H. W. (1986). Diet and arboreality in the emerald monitor, Varanus prasinus, with comments on the study of adaptation. Fieldiana Zoology, 31, 1–12.Google Scholar
  30. Holzman, R., Collar, D. C., Day, S. W., Bishop, K. L., & Wainwright, P. C. (2008). Scaling of suction-induced flows in bluegill: morphological and kinematic predictors for the ontogeny of feeding performance. Journal of Experimental Biology, 211, 2658–2668. doi: 10.1242/jeb.018853.
  31. Hulsey, C. D., García de León, F. J., & Rodiles-Hernández, R. (2006). Micro- and macroevolutionary decoupling of cichlid jaws: a test of Liem’s key innovation hypothesis. Evolution, 60(10), 2096–2109. doi: 10.1111/j.0014-3820.2006.tb01847.x.CrossRefPubMedGoogle Scholar
  32. Hulsey, C. D., Hollingsworth, P. R., & Holzman, R. (2010). Co-evolution of the premaxilla and jaw protrusion in cichlid fishes (Heroine: Cichlidae). Biological Journal of the Linnean Society, 100(3), 619–629. doi: 10.1111/j.1095-8312.2010.01468.x.CrossRefGoogle Scholar
  33. Jackson, A. L., Inger, R., Parnell, A. C., & Bearhop, S. (2011). Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology, 80(3), 595–602. doi: 10.1111/j.1365-2656.2011.01806.x.
  34. Koehl, M. A. R. (1996). When does morphology matter? Annual Review of Ecology and Systematics, 27(1), 501–542. doi: 10.1146/annurev.ecolsys.27.1.501.CrossRefGoogle Scholar
  35. Konow, N., & Bellwood, D. R. (2005). Prey-capture in Pomacanthus semicirculatus (Teleostei, Pomacanthidae): functional implications of intramandibular joints in marine angelfishes. Journal of Experimental Biology, 208, 1421–1433. doi: 10.1242/jeb.01552.CrossRefPubMedGoogle Scholar
  36. Konow, N., & Bellwood, D. R. (2011). Evolution of high trophic diversity based on limited functional disparity in the feeding apparatus of marine angelfishes (f. Pomacanthidae). PLoS ONE, 6(9). doi: 10.1371/journal.pone.0024113
  37. Lauder, G. V. (1981). Form and function: structural analysis in evolutionary morphology. Paleobiology, 7(4), 430–442.CrossRefGoogle Scholar
  38. Layman, C. A., Arrington, D. A., Monta, C. G., & Post, D. M. (2007). Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology, 88(1), 42–48.CrossRefPubMedGoogle Scholar
  39. Lenz, P. H., & Hartline, D. K. (1999). Reaction times and force production during escape behaviour of a calanoid copepod, Undinula vulgaris. Marine Biology, 133, 249–258. doi: 10.1007/s002270050464.CrossRefGoogle Scholar
  40. Liem, K. F. (1973). Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws. Systematic Zoology, 22, 425–441.CrossRefGoogle Scholar
  41. Liem, K. F. (1993). In B. H. J. Hanken (Ed.), Ecomorphology of the teleostean skull. The skull: functional and evolutionary mechanisms. Chicago: The University of Chicago Press.Google Scholar
  42. López-Fernández, H., Arbour, J., Willis, S., Watkins, C., Honeycutt, R. L., & Winemiller, K. O. (2014). Morphology and efficiency of a specialized foraging behavior, sediment sifting, in neotropical cichlid fishes. PloS One, 9(3), e89832. doi: 10.1371/journal.pone.0089832.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mayr, E. (1983). How to carry out the adaptationist program? The American Naturalist, 121(3), 324–334.CrossRefGoogle Scholar
  44. Muller, M., Osse, J., & Verhagen, J. (1982). A quantitative hydrodynamical model of suction feeding in fish. Journal of Theoretical Biology, 45, 49–79.CrossRefGoogle Scholar
  45. Norton, S. F. (1991). Capture success and diet of cottid fishes: the role of predator morphology and attack kinematics. Ecology, 72(5), 1807. doi: 10.2307/1940980.CrossRefGoogle Scholar
  46. Norton, S. F., & Brainerd, E. L. (1993). Convergence in the feeding mechanics of ecomorphologically similar species in the Centrarchidae and Cichlidae. Journal of Experimental Biology, 176, 11–29.Google Scholar
  47. Nyberg, D. W. (1971). Prey capture in the largemouth bass. The American Midland Naturalist, 86, 128–144.CrossRefGoogle Scholar
  48. Olivier, D., Frédérich, B., Spanopoulos-Zarco, M., Balart, E. F., & Parmentier, E. (2014). The cerato-mandibular ligament: a key functional trait for grazing in damselfishes (Pomacentridae). Frontiers in Zoology, 11(1), 63. doi: 10.1186/s12983-014-0063-z.CrossRefGoogle Scholar
  49. Olivier, D., Frédérich, B., Herrel, A., & Parmentier, E. (2015). A morphological novelty for feeding and sound production in the yellowtail clownfish. Journal of Experimental Zoology Part A, 323(4), 227–238. doi: 10.1002/jez.1907.
  50. Olivier, D., Frédérich, B., & Parmentier, E. (2016a). Cerato-mandibular ligament: a key trait in damselfishes? In B. Frédérich & E. Parmentier (Eds.), Biology of damselfishes (pp. 291–309). Boca Raton: CRC press.Google Scholar
  51. Olivier, D., Parmentier, E., & Frédérich, B. (2016b). Insight into biting diversity to capture benthic prey in damselfishes (Pomacentridae). Zoologischer Anzeiger, 264, 47–55. doi: 10.1016/j.jcz.2016.07.006.
  52. Parmentier, E., Colleye, O., Fine, M. L., Frédérich, B., Vandewalle, P., & Herrel, A. (2007). Sound production in the clownfish Amphiprion clarkii. Science, 316(5827), 1006. doi: 10.1126/science.1139753.CrossRefPubMedGoogle Scholar
  53. Parnell, A. C., Inger, R., Bearhop, S., & Jackson, A. L. (2010). Source partitioning using stable isotopes: coping with too much variation. PloS One, 5(3), 1–5. doi: 10.1371/journal.pone.0009672.
  54. R Development Core Team, R (2016). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. See
  55. Revell, L. J. (2009). Size-correction and principal components for interspecific comparative studies. Evolution, 63, 3258–3268.CrossRefPubMedGoogle Scholar
  56. Revell, L. J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217–223.CrossRefGoogle Scholar
  57. Santini, F., & Cooper, W. J. (2016). A revised damselfish taxonomy with a description of the tribe Microspathodontini (Giant damselfishes). In B. Frédérich & E. Parmentier (Eds.), Biology of damselfishes (pp. 13–30). Boca Raton: CRC press.Google Scholar
  58. Schaefer, S. A., & Lauder, G. V. (1996). Testing historical hypotheses of morphological change: biomechanical decoupling in loricarioid catfishes. Evolution, 50(4), 1661–1675. doi: 10.2307/2410902.CrossRefGoogle Scholar
  59. Stiassny, M. L. J. (1981). The phyletic status of he family Cichlidae (Pisces, Perciformes): a comparative anatomical investigation. Netherlands Journal of Zoology, 31(2), 275–314. doi: 10.1163/002829681X00013.CrossRefGoogle Scholar
  60. Stone, R. (1995). Taking a new look at life through a functional lens. Science (New York, N.Y.), 269, 316–317. doi: 10.1126/science.269.5222.316
  61. Tsuboi, M., Gonzalez-voyer, A., & Kolm, N. (2015). Functional coupling constrains craniofacial diversification in Lake Tanganyika cichlids. Biology Letters, 11, 20141053. doi: 10.1098/rsbl.2014.1053.
  62. Turner, T. F., Collyer, M. L., Krabbenhoft, T. J., Ecology, S., August, N., Turner, T. F., et al. (2010). A general hypothesis-testing framework for stable isotope ratios in ecological studies. Ecology, 91(8), 2227–2233.Google Scholar
  63. Wainwright, P. C. (2007). Functional versus morphological diversity in macroevolution. Annual Review of Ecology and Systematics, 38, 381–401. doi: 10.1146/annurev.ecolsys.38.091206.095706.
  64. Wainwright, P. C., & Bellwood, D. R. (2002). Ecomorphology of feeding in coral reef fishes. In P. F. Sale (Ed.), Coral Reef Fishes: dynamics and diversity in a complex ecosystem (pp. 33–55). San Diego: Academic Press.Google Scholar
  65. Wainwright, P. C., & Reilly, S. M. (1994). Ecological morphology: integrative organismal biology. (P. C. Wainwright & S. M. Reilly, Eds.). University of Chicago Press.Google Scholar
  66. Wainwright, P. C., Ferry-Graham, L. A., Waltzek, T. B., Carroll, A. M., Hulsey, C. D., & Grubich, J. R. (2001). Evaluating the use of ram and suction during prey capture by cichlid fishes. Journal of Experimental Biology, 204, 3039–3051.Google Scholar
  67. Waltzek, T. B., & Wainwright, P. C. (2003). Functional morphology of extreme jaw protrusion in Neotropical cichlids. Journal of Morphology, 257(1), 96–106. doi: 10.1002/jmor.10111.CrossRefPubMedGoogle Scholar
  68. Webb, P. W. (1984). Body form, locomotion and foraging in aquatic vertebrates. American Zoologist, 24, 107–120.CrossRefGoogle Scholar
  69. Westneat, M. W., & Wainwright, P. C. (1989). Feeding mechanism of Epibulus insidiator (Labridae; Telesotei): evolution of a novel functional system. Journal of Morphology, 205, 269–275.CrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2017

Authors and Affiliations

  • Damien Olivier
    • 1
  • Laura Gajdzik
    • 1
  • Eric Parmentier
    • 1
  • Bruno Frédérich
    • 1
  1. 1.Laboratoire de Morphologie Fonctionnelle et Evolutive, AFFISH Research Center, Institut de Chimie (B6C)Université de LiegeLiegeBelgium

Personalised recommendations