Organisms Diversity & Evolution

, Volume 17, Issue 3, pp 565–594 | Cite as

The thoracic anatomy of the male and female winter moth Nyssiodes lefuarius (Lepidoptera: Geometridae) and evolutionary changes in the thorax of moths and butterflies

  • Si -Pei Liu
  • Benjamin Wipfler
  • Shuhei Niitsu
  • Rolf G. Beutel
Original Article

Abstract

The thoraces of males and flightless females of the geometrid winter moth Nyssiodes lefuarius are described, documented in detail, and compared. Morphological, functional, and evolutionary aspects of the female phenotype are discussed. The flightlessness of female N. lefuarius is linked not only with complex modifications of the skeletomuscular structure, especially elements of the flight apparatus, but also with greatly enlarged ovaries and a reduced gut. Compared with other flightless female lepidopterans, females of N. lefuarius display a specific thoracic skeletomuscular configuration, which strongly suggests independent evolution, in agreement with the phylogenetic pattern. The evolutionary scenario of flight ability enhancement in Lepidoptera is demonstrated using a combined phylogeny from recent studies based on molecular data. Thoracic skeletomuscular characters are compiled and mapped, mainly using extensive information from the literature, but also including the new morphological data obtained from the male N. lefuarius. Important changes in the thoracic character system are linked with the rise of Coelolepida, Heteroneura, and Ditrysia. Only minor changes take place in the character system in more advanced groups of Lepidoptera. A highly unusual feature is the secondarily stiff wing type in some groups of Ditrysia without the neopteran basal folding mechanism. The morphological background of the secondarily evolved “palaeopteran” condition is a complex of different character changes. Major problems in the reconstruction of the phylogeny are a high degree of homoplasy and missing detailed data for several crucial taxa emerging close to the root of the order.

Keywords

Nyssiodes Thorax Anatomy Flightlessness Phylogeny Evolution Lepidoptera 

Notes

Acknowledgements

We are very grateful to Dr. Thomas Simonsen, Dr. Maria Heikkilä, Dr. Frank Friedrich, and an anonymous reviewer for their valuable comments, recommendations, and criticisms, which have enormously helped to improve this study. Their help with literature sources is also greatly appreciated. Great thanks are also due to Prof. Dr. Stanislav Gorb (Zoological Institute, Functional Morphology and Biomechanics, Kiel University) for providing μ-CT scans. This project is financially supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 642241.

Supplementary material

13127_2017_328_MOESM1_ESM.xlsx (337 kb)
Appendix 1Combined muscular and skeletal data of all studied taxa (XLSX 337 kb)
13127_2017_328_MOESM2_ESM.xlsx (75 kb)
Appendix 2Muscular homology chart (XLSX 75 kb)
13127_2017_328_MOESM3_ESM.xlsx (61 kb)
Appendix 3Characters for mapping analysis (XLSX 60 kb)
13127_2017_328_MOESM4_ESM.xlsx (92 kb)
Appendix 4Character matrix (XLSX 92 kb)

References

  1. Bazinet, A. L., Mitter, K. T., Davis, D. R., Van Nieukerken, E. J., Cummings, M. P., & Mitter, C. (2016). Phylotranscriptomics resolves ancient divergences in the Lepidoptera. Systematic Entomology. doi:10.1111/syen. 12217.Google Scholar
  2. Berlese, A. (1909). Gli Insetti. Vol. I. Milano: Societa Editrice Libraria.Google Scholar
  3. Betts, C. R., & Wootton, R. J. (1988). Wing shape and flight behavior in butterflies (Lepidoptera: Papilionoidea and Hesperioidea): a preliminary analysis. Journal of Experimental Biology, 138, 271–288.Google Scholar
  4. Beutel, R. G., Friedrich, F., Ge, S.-Q., & Yang, X.-K. (2014). Insect morphology and phylogeny. A textbook for students of Entomology. Berlin: Walter de Gruyter.Google Scholar
  5. Beutel, R. G., Friedrich, F., Hörnschmeyer, T., Pohl, H., Hünefeld, F., Beckmann, F., Meier, R., Misof, B., Whiting, M. F., & Vilhelmsen, L. (2011). Morphological and molecular evidence converging upon a robust phylogeny of the megadiverse Holometabola. Cladistics, 27, 341–355.CrossRefGoogle Scholar
  6. Bharadwaj, R. K., Chandran, R. S., & Chadwick, L. E. (1974). The cervical and thoracic musculature of Lepidoptera. Part I. Manduca sexta (Johannson) and Spodoptera eridania (Cramer) (Lepidoptera: Sphingidae and Noctuidae). Journal of Natural History, 8(3), 291–300.CrossRefGoogle Scholar
  7. Brehm, G., Bodner, F., Strutzenberger, P., Hünefeld, F., & Fiedler, K. (2011). Neotropical Eois (Lepidoptera: Geometridae): checklist, biogeography, diversity and description patterns. Annals of the Entomological Society of America, 104, 1091–1107.CrossRefGoogle Scholar
  8. Brock, J. P. (1971). A contribution towards an understanding of the morphology and phylogeny of the Ditrysian Lepidoptera. Journal of Natural History, 5(1), 29–102.CrossRefGoogle Scholar
  9. Brodsky, A. K. (1994). The evolution of insect flight (2nd ed.). Oxford: Oxford University Press.Google Scholar
  10. Burrows, M., & Dorosenko, M. (2015). Jumping mechanisms in adult caddis flies (Insecta, Trichoptera). The Journal of Experimental Biology, 218, 2764–2774.CrossRefPubMedGoogle Scholar
  11. Czihak, G. (1956). Beiträge zur Anatomie des Thorax von Ascalaphus macaronius SCOP., Myrmeleon europaeus McLACH und Palpares libelluloides Dalm. (Vgl. Amatomie des Neuropteroiden-Thorax II). Zoologische Jahrbücher, Abteilung für Anatomie und Ontogenie der Tiere, 75(1956), 401–432.Google Scholar
  12. Davis, D. R. (1998). The Monotrysian Heteroneura. In N. P. Kristensen (Ed.), Lepidoptera: moths and butterflies, vol. 1. Evolution, systematics and biogeography. Handbuch der Zoologie/handbook of zoology, IV/35 (pp. 65–90). Berlin: Walter de Gruyter.Google Scholar
  13. Dierl, W. (1964). Cytologie, Morphologie und Anatomie der Sackspinner Fumea casta (Pallas) und crassiorella (Bruand) sowie Bruandia comitella (Bruand) (Lepidoptera, Psychidae) mit Kreuzungsversuchen zur Klärung der Artsspezifität. Zoologische Jahrbücher. Abteilung für Systematik, Ökologie und Geographie der Tiere, 91, 201–270.Google Scholar
  14. Edwards, E. D., Gentili, P., Horak, M., & Nielsen, E. S. (1998). The cossoid/sesioid assemblage. In N. P. Kristensen (Ed.), Lepidoptera: moths and butterflies, vol. 1. Evolution, systematics and Biogeography. Handbuch der Zoologie/handbook of zoology IV/35 (pp. 7–25). Berlin: Walter de Gruyter.Google Scholar
  15. Ehrlich, P. R., & Davidson, S. E. (1961). The internal anatomy of the monarch butterfly, Danaus plexippus L. (Lepidoptera: Nymphalidae). Microentomology, 24, 85–133.Google Scholar
  16. Ehrlich, P. R., & Ehrlich, A. H. (1963). The thoracic and basal abdominal musculature of the butterflies (Lepidoptera: Papilionoidea). Microentomology, 25(2), 91–126.Google Scholar
  17. Friedrich, F., & Beutel, R. G. (2008). The thorax of Zorotypus (Hexapoda, Zoraptera) and a new nomenclature for the musculature of Neoptera. Arthropod Structure & Development, 37, 29–54.CrossRefGoogle Scholar
  18. Friedrich, F., & Beutel, R. G. (2010). Goodbye Halteria? The thoracic morphology of Endopterygota (Insecta) and its phylogenetic implications. Cladistics, 26, 579–612.CrossRefGoogle Scholar
  19. Heikkilä, M., Mutanen, M., Wahlberg, N., Sihvonen, P., & Kaila, L. (2015). Elusive ditrysian phylogeny: An account of combining systematized morphology with molecular data (Lepidoptera). BMC Evolutionary Biology, 15, 260.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Imada, Y., Kawakita, A., & Kato, M. (2011). Allopatric distribution and diversification without niche shift in a bryophyte-feeding basal moth lineage (Lepidoptera: Micropterigidae). Proceedings of the Royal Society, 2011(278), 3026–3033.CrossRefGoogle Scholar
  21. Ivanov, V. D., & Kozlov, M. V. (1987). Comparative analysis of pterothoracic musculature of caddis-flies (Insecta, Trichoptera). Zoological Journal, 66(10), 1484–1497.Google Scholar
  22. Kitching, I. J., & Rawlins, J. E. (1998). The Noctuoidea. In N. P. Kristensen (Ed.), Lepidoptera: Moths and butterflies, vol. 1. Evolution, systematics and biogeography. Handbuch der Zoologie/handbook of zoology IV/35 (pp. 7–25). Berlin: Walter de Gruyter.Google Scholar
  23. Kjer, K. M., Blahnik, R. J., & Holzenthal, R. W. (2002). Phylogeny of caddisflies (Insecta, Trichoptera). Zoologica Scripta, 31(1), 83–91.CrossRefGoogle Scholar
  24. Korzeev, A. I. (2001). Skeleton and musculature of head and cervical region in Hepialus humuli L. (Lepidoptera, Hepialidae) and Archiearias parthenias L. (Geometridae). Entomologicheskoye Obozreniye, 80, 326–352 [in Russian].Google Scholar
  25. Kozlov, M. V. (1986a). Pterothoracical muscles of the primitive moths (Lepidoptera, Micropterigidae-Tischeriidae). Vestnik Zoologii, 1, 60–71 [In Russian].Google Scholar
  26. Kozlov, M. V. (1986b). The functional morphology of the pterothorax and features of flight in lower of the pterothorax and features of flight in lower lepidopterans (Lepidoptera: Micropterigidae-Tischeriidae). Trudy Vsesoyuznogo Entomologicheskoye Obshchestva., 68, 46–48 [in Russian].Google Scholar
  27. Kozlov, M. V. (1986c). Functional morphology of pterothoracal muscles in Operophtera brumata L. (Lepidoptera, Geometridae). Zhurnal Evolutsionnoi Biokhimii I Fiziologii, 22, 492–496 In Russian; English translation Journal of Evolutionary Biochemistry and Physiology, 22.Google Scholar
  28. Kozlov, M. V. (1986d). Functional morphology of the pterothorax and wings of the dark fruit-tree Tortrix and the European grain moth. Bulletin VNII Zashchiti Rasteniy, 63, 31–38.Google Scholar
  29. Kozlov, M. V. (1989). Sclerites and muscles of pterthorax in Sesiidae and Choreutidae (Papilionida: Sesioidea). Bulletin Moskovskogo Obchestva Ispytatelei Prirody. Otdelenie Biologicheskoje, 94, 44–52 [in Russian].Google Scholar
  30. Kozlov, M. V. (1990). The peculiarities in morphology of the pectoral part of Papilionoidea, Hepialidae and some features of the pterothorax common structure of scale-winged. Nauchnye Doklady Vysshei Shkoly Biologicheskie Nauki, 5, 59–65 [in Russian].Google Scholar
  31. Kozlov, M. V. (1991). Skeleton and musculature of the pterothorax in carpenter moths (Lepidoptera, Cossidae). Entomologicheskoye Obozreniye, 70, 321–329 in Russian; English translation Entomological Review. 71: 10–18.Google Scholar
  32. Kozlov, M. V. (2012). Ground plan and evolution of pterothoracic musculature of moths and butterflies (Lepidoptera). Entomological Review, 92(2), 162–177.CrossRefGoogle Scholar
  33. Kristensen, N. P. (1984). Studies on the morphology and systematics of primitive Lepidoptera (Insecta). Steenstrupia, 10(5), 141–191.Google Scholar
  34. Kristensen, N. P. (1998). The non-Glossatan moths. In N. P. Kristensen (Ed.), Lepidoptera: moths and butterflies, vol. 1. Evolution, systematics and biogeography. Handbuch der Zoologie/handbook of zoology IV/35 (pp. 7–25). Berlin: Walter de Gruyter.Google Scholar
  35. Kristensen, N. P. (2003). Skeleton and muscles: adults. In N. P. Kristensen (Ed.), Lepidoptera: moths and butterflies, vol. 2. morphology, physiology, and development. Handbuch der Zoologie/handbook of zoology IV/35 (pp. 39–164). Walter de Gruyer: Berlin & New York.Google Scholar
  36. Kristensen, N. P., & Nielsen, E. S. (1979). A new subfamily of micropterigid moths from South America. A contribution to the morphology and phylogeny of the Micropterigidae, with a generic catalogue of the family (Lepidoptera: Zeugloptera). Steenstrupia, 5(7), 69–147.Google Scholar
  37. Kristensen, N. P., & Skalski, A. W. (1998). Phylogeny and palaeontology. In N. P. Kristensen (Ed.), Lepidoptera: moths and butterflies, vol. 1. Evolution, systematics and biogeography. Handbuch der Zoologie/handbook of zoology IV/35 (pp. 7–25). Berlin: Walter de Gruyter.Google Scholar
  38. Kristensen, N. P., Scoble, M. J., & Karsholt, O. (2007). Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Zootaxa, 1668, 699–747.Google Scholar
  39. Leite, L. A. R., Casagrande, M. M., & Mielke, O. H. H. (2010a). External morphology of the adult of Heraclides anchisiades capys (Hübner, [1809]) (Lepidoptera–Papilionidae). I. Head, cephalic appendages and cervical region. Brazilian Archives of Biology and Technology, 53(5), 1119–1126.CrossRefGoogle Scholar
  40. Leite, L. A. R., Casagrande, M. M., & Mielke, O. H. H. (2010b). External morphology of the adult of Heraclides anchisiades capys (Hübner, [1809]) (Lepidoptera–Papilionidae). II. Thorax and thoracic appendages. Brazilian Archives of Biology and Technology, 53(6), 1407–1416.CrossRefGoogle Scholar
  41. Maki, T. (1938). Studies on the thoracic musculature in insects. Memoirs of the Faculty of Science and Agriculture, Taihoku Imperial University, 24(1), 1–343.Google Scholar
  42. MacFarlane, J., & Eaton, J. L. (1973). Skeleton and musculature of the head and thorax of Trichoplusia ni (Hubner), (Lepidoptera: Noctuidae). Journal of Morphology, 139(2), 185–210.CrossRefGoogle Scholar
  43. Matsuda, R. (1970). Morphology and evolution of the insect thorax. Memoirs of the Entomological Society of Canada, 76, 1–431.Google Scholar
  44. Minet, J. (1991). Tentative reconstruction of the ditrysian phylogeny (Lepidoptera: Glossata). Entomologica Scandinavica, 22, 69–95.CrossRefGoogle Scholar
  45. Minet, J., & Scoble, M. J. (1998). The drepanoid/geometrid assemblage. In N. P. Kristensen (Ed.), Lepidoptera: Moths and Butterflies, Vol. 1. Evolution, Systematics and Biogeography. Handbuch der Zoologie/handbook of Zoology IV/35 (pp. 301–320). Walter de Gruyer: Berlin.Google Scholar
  46. Mitchell, B. K., & Seabrook, W. D. (1970). Prothoracic musculature of the adult male spruce budworm Choristoneura fumiferana (Lepidoptera: Tortricidae). The Canadian Entomologist, 102, 627–636.CrossRefGoogle Scholar
  47. Mitchell, B. K., & Seabrook, W. D. (1971). Pterothoracic musculature of the adult male spruce budworm Choristoneura fumiferana (Lepidoptera: Tortricidae). The Canadian Entomologist, 103(1), 1–12.CrossRefGoogle Scholar
  48. Nielsen, E. S., & Kristensen, N. P. (1996). The Australian moth family Lophocoronidae and the basal phylogeny of the Lepidoptera-Glossata. Invertebrate Taxonomy, 10, 1199–1302.CrossRefGoogle Scholar
  49. Niitsu, S. (2001). Wing degeneration due to apoptosis in the female of the winter moth Nyssiodes lefuarius (Lepidoptera, Geometridae). Entomological Science, 4(1), 1–7.Google Scholar
  50. Niitsu, S., Toga, K., Tomizuka, S., Maekawa, K., & Kamito, T. (2014). Ecdysteroid-induced programmed cell death is essential for sex-specific wing degeneration of the wingless-female winter moth. PloS One, 9(2), e89435.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ninomiya, T., & Yoshizawa, K. (2009). A revised interpretation of the wing base structure in Odonata. Systematic Entomology, 34, 334–345.CrossRefGoogle Scholar
  52. Nüesch, H. (1953). The morphology of the thorax of Telea polyphemus Cr. I. Skeleton and muscles. Journal of Morphology, 93(3), 589–604.CrossRefGoogle Scholar
  53. Regier, J. C., Mitter, C., Kristensen, N. P., Davis, D. R., Van Nieukerken, E. J., Rota, J., Simonsen, T. J., Mitter, K. T., Kawahara, A. Y., Yen, S.-H., Cummings, M. P., & Zwick, A. (2015). A molecular phylogeny for the oldest (nonditrysian) lineages of extant Lepidoptera, with implications for classification, comparative morphology and life-history evolution. Systematic Entomology, 2015(40), 671–704.CrossRefGoogle Scholar
  54. Roff, D. (1986). The evolution of wing dimorphism in insects. Evolution, 40(5), 1009–1020.CrossRefPubMedGoogle Scholar
  55. Roff, D. (1990). The evolution of flightlessness in insects. Ecological Monographs, 60(4), 389–421.CrossRefGoogle Scholar
  56. Sharplin, J. (1963a). Wing base structure in Lepidoptera. I. Fore wing base. The Canadian Entomologist, 95(10), 1024–1050.CrossRefGoogle Scholar
  57. Sharplin, J. (1963b). Wing base structure in Lepidoptera. II. Hind wing base. The Canadian Entomologist, 95(11), 1121–1145.CrossRefGoogle Scholar
  58. Sharplin, J. (1964a). Wing folding in Lepidoptera. The Canadian Entomologist, 96(1–2), 148–149.CrossRefGoogle Scholar
  59. Sharplin, J. (1964b). Wing base structure in Lepidoptera III. Taxonomic characters. The Canadian Entomologist, 96(7), 943–949.CrossRefGoogle Scholar
  60. Simonsen, T. J. (2001). The wing vestiture of the non-ditrysian Lepidoptera (Insecta). Comparative morphology and phylogenetic implications. Acta Zoologica, 82(4), 275–298.CrossRefGoogle Scholar
  61. Simonsen, T. J. (2009). Wing vestiture of the newly described monotrysian Lepidoptera family Andesianidae Davis and Gentili suggests affinity with the putative Tischerioidea–Ditrysia clade (Insecta: Lepidoptera). Studies on Neotropical Fauna and Environment, 44(2), 109–114.CrossRefGoogle Scholar
  62. Simonsen, T. J., & Kristensen, N. P. (2001). Agathiphaga wing vestiture revisited: evidence for complex early evolution of lepidopteran scales (Lepidoptera: Agathiphagidae). Insect Systematics & Evolution, 32(2), 169–175.CrossRefGoogle Scholar
  63. Simonsen, T. J., Jong, R., Heikkilä, M., & Kaila, L. (2012). Butterfly morphology in a molecular age—does it still matter in butterfly systematics? Arthropod Structure & Development, 41, 307–322.CrossRefGoogle Scholar
  64. Snäll, N., Tammaru, T., Wahlberg, N., Viidalepp, J., Ruohomäki, K., Savontaus, M.-L., & Huoponen, K. (2007). Phylogenetic relationships of the tribe Operophterini (Lepidoptera, Geometridae): a case study of the evolution of female flightlessness. Biological Journal of the Linnean Society, 92, 241–252.CrossRefGoogle Scholar
  65. Srivastava, K. P. (1961). Studies on lemon-butterfly, Papilio demoleus L. (Lepidoptera). Part II. Skeleto-muscular mechanism (cervix and prothorax). Indian Journal of Entomology, 23, 202–213.Google Scholar
  66. Srivastava, K. P. (1962). Studies on lemon-butterfly, Papilio demoleus L. (Lepidopetera). Part III. Skeleto-muscular mechanism (pterothorax and its legs). Indian Journal of Entomology, 24(2), 114–134.Google Scholar
  67. Tindall, A. R. (1965). The functional morphology of the thorax of Limnephilus marmoratus Curtis (Trichoptera: Limnephilidae). Ecological Entomology, 117(5), 127–166.Google Scholar
  68. Wagner, D. L., & Liebherr, J. K. (1992). Flightlessness in insects. Trend in Ecology and Evolution, 7(7), 216–220.CrossRefGoogle Scholar
  69. Wahlberg, N., Snäll, N., Viidalepp, J., Ruohomäki, K., & Tammaru, T. (2010). The evolution of female flightlessness among Ennominae of the Holarctic forest zone (Lepidoptera, Geometridae). Molecular Phylogenetics and Evolution, 55(2010), 929–938.CrossRefPubMedGoogle Scholar
  70. Weber, H. (1924). Das Thorakal-Skelett der Lepidopteren.—Ein Beitrag zur vergleichenden Morphologie des Insekten-Thorax. Zeitschrift für Anatomie und Entwicklungsgeschichte, 73(3), 277–331.CrossRefGoogle Scholar
  71. Weber, H. (1928). Die Gliederung der Sternopleuralregion des Lepidopterenthorax. Eine vergleichend morphologische Studie zur Subcoxaltheorie. Zeitschrift für wissenschafitliche Zoologie, 131, 181–254.Google Scholar
  72. Wiegmann, B. M., Regier, J. C., & Mitter, C. (2002). Combined molecular and morphological evidence on the phylogeny of the earliest lepidopteran lineages. Zoologica Scripta, 31(1), 67–81.CrossRefGoogle Scholar
  73. Willkommen, J., & Hörnschemeyer, T. (2007). The homology of wing base sclerites and flight muscles in Ephemeroptera and Neoptera and the morphology of the pterothorax of Habroleptoides confusa (Insecta: Ephemeroptera: Leptophlebiidae). Arthropod Structure & Development, 36, 253–269.Google Scholar
  74. Wipfler, B., Klug, R., Ge, S.-Q., Bai, M., Göbbels, J., Yang, X.-K., & Hörnschemeyer, T. (2014). The thorax of Mantophasmatodea, the morphology of flightlessness, and the evolution of the neopteran insects. Cladistics, 2014, 1–21.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2017

Authors and Affiliations

  • Si -Pei Liu
    • 1
  • Benjamin Wipfler
    • 1
  • Shuhei Niitsu
    • 2
  • Rolf G. Beutel
    • 1
  1. 1.Institut für Spezielle Zoologie und EvolutionsbiologieFSU JenaJenaGermany
  2. 2.Department of BiologyTokyo Metropolitan UniversityTokyoJapan

Personalised recommendations