Advertisement

Organisms Diversity & Evolution

, Volume 17, Issue 2, pp 393–408 | Cite as

Tracking the variability of phenotypic traits on a molecular phylogeny: an example from scolopendrid centipedes in peninsular India

  • Jahnavi JoshiEmail author
  • Gregory D. Edgecombe
Original Article

Abstract

Taxonomic studies on scolopendrid centipedes have often documented variability at the individual and population levels and applied those data to questions of species delimitation, but these investigations have mostly lacked an explicit phylogenetic framework. A molecular phylogeny and recent taxonomic revision for Indian species of the scolopendrid Digitipes Attems, 1930, permit variability of traditional taxonomic characters for Scolopendridae to be mapped onto a phylogeny. Based on their fit to the tree using maximum likelihood, reliable species-level characters include the number of glabrous antennal articles, presence of a median ridge on the tergites, and presence or absence of a tarsal spur on leg 20. Characters that are conserved within and diagnostic for particular species but labile within others (typically with geographic structure) include the first tergite with paramedian sutures, presence or absence of a lateral spine on the coxopleuron, and the number of spines in a ventromedial row on the ultimate leg prefemur. Comparisons with published accounts of variability in species of other scolopendrid genera, particularly Scolopendra and Otostigmus, show that Indian Digitipes has conserved morphology in some characters that are taxonomically useful elsewhere in the family, and most of its taxonomically informative characters have analogous patterns of variability in other genera. The approach used in this study to evaluate morphological variation in a phylogenetic framework can be applied to other taxa in which morphologically cryptic species have been reported and where species diagnosis requires a combination of characters.

Keywords

Character mapping Chilopoda Digitipes Western Ghats 

Notes

Acknowledgements

This collaboration was supported by a Royal Society International Exchange. We thank the Forest Departments of Kerala, Karnataka, and Goa for granting permission to collect in their forest areas; and Council for Scientific and Industrial Research and Ministry of Environment and Forests for funding the field excursions and molecular work. JJ would like to thank Dr. Praveen Karanth for useful discussions and encouragement to pursue this work. Dr. John Lewis advised on various taxonomic characters, and the journal’s referees provided useful suggestions that substantially improved the manuscript.

References

  1. Attems, C. (1930). Myriapoda 2. Scolopendromorpha. In F. E. Schulze & W. Kükenthal (Eds.), Das Tierreich, 54 (pp. 1–308). Berlin: Walter de Gruyter.Google Scholar
  2. Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K., Meier, R., Winker, K., Ingram, K. K., et al. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22, 148–155.CrossRefGoogle Scholar
  3. Bonato, L., Edgecombe, G. D., Lewis, J. G. E., Minelli, A., Pereira, L. A., Shelley, R. M., & Zapparoli, M. (2010). A common terminology for the external anatomy of centipedes (Chilopoda). ZooKeys, 69, 17–51.CrossRefGoogle Scholar
  4. Füller, H. (1963). Vergleichende Untersuchungen über das Skelettmuskelsystem der Chilopoden. Abhandlungen der deutschen Akademie der Wissenschaften zu Berlin, Klasse für Chemie, Geologie und Biology, Jahrgang, 1962(3), 1–98.Google Scholar
  5. Ihaka, R., & Gentleman, R. (1996). R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5, 299–314.Google Scholar
  6. Jangi, B. S., & Dass, C. M. (1984). Scolopendridae of the Deccan. Journal of Scientific and Industrial Research, 43, 27–54.Google Scholar
  7. Joshi, J., & Edgecombe, G. D. (2013). Revision of the scolopendrid centipede Digitipes Attems, 1930, from India (Chilopoda: Scolopendromorpha): reconciling molecular and morphological estimates of species diversity. Zootaxa, 3626, 99–145.CrossRefPubMedGoogle Scholar
  8. Joshi, J., & Karanth, K. P. (2012). Coalescent method in conjunction with niche modelling reveals cryptic diversity among centipedes in the western Ghats of South India. PloS One, 7, e42225.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Joshi, J., & Karanth, P. (2013). Did southern western Ghats of peninsular India serve as refugia for its endemic biota during the Cretaceous volcanism? Ecology and Evolution, 3, 3275–3282.PubMedPubMedCentralGoogle Scholar
  10. Kraepelin, K. (1903). Revision der Scolopendriden. Jahrbuch der Hamburgischen wissenschaftlichen Anstalten, 20(2), 1–276.Google Scholar
  11. Kraus, O. (1957). Einekleine Myriapoden-Ausbeuteaus Katanga (Belgisch Congo). Revue de Zoologie et de Botanique Africaines, 55, 396–404.Google Scholar
  12. Lewis, J. G. E. (1967). The scolopendromorph centipedes of the Sudan with remarks on taxonomic characters in the Scolopendridae. Proceedings of the Linnean Society London, 178, 185–207.CrossRefGoogle Scholar
  13. Lewis, J. G. E. (1968). Individual variation in a population of the centipede Scolopendra amazonica from Nigeria and its implications for methods of taxonomic discrimination in the Scolopendridae. Journal of the Linnean Society (Zoology), 47, 315–326.Google Scholar
  14. Lewis, J. G. E. (1969). The variation of the centipede Scolopendra amazonica in Africa. Zoological Journal of the Linnean Society, 48, 49–57.CrossRefGoogle Scholar
  15. Lewis, J. G. E. (1978). Variation in tropical scolopendrid centipedes: problems for the taxonomist. Abhandlungen und Verhandlungen des naturwissenschaftlichen Vereins in Hamburg, NF, 21/22, 43–50.Google Scholar
  16. Lewis, J. G. E. (2000). Variation in three centipede species of the genus Otostigmus and its bearing on species discrimination (Chilopoda; Scolopendromorpha; Scolopendridae). Journal of Natural History, 34, 433–448.CrossRefGoogle Scholar
  17. Lewis, J. G. E. (2003a). The problems involved in the characterisation of scolopendromorph species (Chilopoda: Scolopendromorpha). African Invertebrates, 44, 61–69.Google Scholar
  18. Lewis, J. G. E. (2003b). On the identity of the various taxa that have been assigned to Otostigmus (O.) politus Krasch, 1881 and forms related thereto (Chilopoda: Scolopendromorpha). Arthropoda Selecta, 12, 1930–1206.Google Scholar
  19. Lewis, J. G. E. (2010). A revision of the rugulosus group of Otostigmus subgenus Otostigmus Porat, 1876 (Chilopoda: Scolopendromorpha: Scolopendridae). Zootaxa, 2579, 1–29.Google Scholar
  20. Lewis, J. G. E. (2015). On Verhoeff’s Otostigmus subgenus Malaccopleurus, the nudus group of Otostigmus subgenus Otostigmus Porat, 1876, and Digitipes Attems, 1930, with a description of the foetus stadium larva in O. sulcipes Verhoeff, 1937, (Chilopoda: Scolopendromorpha: Scolopendridae). Zootaxa, 4039, 225–248.CrossRefPubMedGoogle Scholar
  21. Kawakita, A., Sota, T., Ito, M., Ascher, J. S., Tanaka, H., Kato, M., & Roubik, D. W. (2004). Phylogeny, historical biogeography, and character evolution in bumble bees (Bombus: Apidae) based on simultaneous analysis of three nuclear gene sequences. Molecular Phylogenetics and Evolution, 31, 799–804.CrossRefPubMedGoogle Scholar
  22. Machado, C. A., Jousselin, E., Kjellberg, F., Compton, S. G., & Herre, E. A. (2001). Phylogenetic relationships, historical biogeography and character evolution of fig-pollinating wasps. Proceedings of the Royal Society B: Biological Sciences, 268, 685–694.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Michalik, P., & Rittschof, C. C. (2011). A comparative analysis of the morphology and evolution of permanent sperm depletion in spiders. PloS One, 6, e16014.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Oliver, J. C., Robertson, K. A., & Monteiro, A. (2009). Accommodating natural and sexual selection in butterfly wing pattern evolution. Proceedings of the Royal Society B: Biological Sciences, 276, 2369–2375.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Paradis, E., Claude, J., & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290.CrossRefPubMedGoogle Scholar
  26. Siriwut, W., Edgecombe, G. D., Sutcharit, C., & Panha, S. (2015a). The centipede genus Scolopendra in mainland Southeast Asia: molecular phylogenetics, geometric morphometrics, and external morphology as tools for species delimitation. PloS One, 10, e0135355.Google Scholar
  27. Siriwut, W., Edgecombe, G. D., Sutcharit, C., Tongkerd, P., & Panha, S. (2015b). First record of the African-Indian centipede genus Digitipes Attems, 1930 (Scolopendromorpha: Otostigminae) from Myanmar, and the systematic position of a new species based on molecular phylogenetics. Zootaxa, 3931(1), 71–87.Google Scholar
  28. Siriwut, W., Edgecombe, G. D., Sutcharit, C., Tongkerd, P., & Panha, S. (2016). A taxonomic review of the centipede genus Scolopendra Linnaeus, 1758 (Scolopendromorpha, Scolopendridae) in mainland Southeast Asia, with description of a new species from Laos. ZooKeys, 590, 1–124.CrossRefGoogle Scholar
  29. Stamatakis, A., Ludwig, T., & Meier, H. (2005). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics, 21, 456–463.CrossRefPubMedGoogle Scholar
  30. Zaldivar-Riverón, A., Belokobylskij, S. A., León-Regagnon, V., Briceño-G, R., & Quicke, D. L. J. (2008). Molecular phylogeny and historical biogeography of the cosmopolitan parasitic wasp subfamily Doryctinae (Hymenoptera: Braconidae). Invertebrate Systematics, 22, 345–364.CrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2017

Authors and Affiliations

  1. 1.Centre for Ecological SciencesIndian Institute of ScienceBangaloreIndia
  2. 2.National Centre for Biological Sciences, Tata Institute for Fundamental ResearchBangaloreIndia
  3. 3.Department of Earth Sciences, The Natural History MuseumLondonUK

Personalised recommendations