Organisms Diversity & Evolution

, Volume 17, Issue 1, pp 251–265 | Cite as

Sympatric lineage divergence in cryptic Neotropical sweat bees (Hymenoptera: Halictidae: Lasioglossum)

  • Patricia Landaverde-González
  • Humberto Moo-Valle
  • Tomás E. Murray
  • Robert J. Paxton
  • José Javier G. Quezada-Euán
  • Martin Husemann
Original Article


Given ongoing biodiversity decline, an important concern is that a large fraction of species diversity is not yet documented. Correct delimitation of species remains a challenge, especially for small and morphologically uniform groups such as sweat bees (Halictidae). Here, we applied an integrative taxonomic approach to study diversity within the Neotropical sweat bee subgenus Dialictus (genus Lasioglossum). We used four statistical methods to delimit species based on cytochrome oxidase subunit I gene sequences: Automatic Barcode Gap Discovery (ABGD), two variants of the General Mixed Yule Coalescent (single-threshold (stGMYC) and Bayesian (bGMYC)) and the Refined Single Linkage analysis (RESL). We detected eight principal molecular operational taxonomic units (mOTUs). Subsequently, these lineages were evaluated using ten nuclear microsatellite loci and morphological and ecological analyses. Most mOTUs could be differentiated using microsatellites and morphology (82 % identified correctly), further supporting the status of mOTUs as independent biological units. For the two most widespread mOTUs, we analysed intra-lineage geographic variation using microsatellites but did not detect additional substructuring. We further tested if the lineages showed predictable patterns of co-occurrence and habitat preferences. While we did not find any evidence of preferential association or disassociation between taxa, we detected a slight positive effect of high crop cover favouring the abundance of some lineages. We show that integrated approaches using statistical analysis of DNA barcodes jointly with additional data can provide robust and objective means of delimiting species in morphologically difficult groups.


Biodiversity Co-occurrence DNA barcoding Species delimitation Yucatan Peninsula 



We thank the CONACYT-EU project FONCICYT 94293 (Mutualismos y abejas en paisajes tropicales) and SEP-CONACyT 103341 (Conservación de las abejas sin aguijón de México) for financial support. We thank Julie Osgood for her help with microsatellite genotyping and Ricardo Ayala, Remy Vandame, Philippe Sagot and Jason Gibbs for comments, bibliography and insights to define the best characters for morphological analyses. Panagiotis Theodorou provided statistical help. Finally, we would like to thank the Deutsche Akademische Austauschdienst (DAAD) for grants provided to P.L.G. and Julie Osgood.

Supplementary material

13127_2016_307_MOESM1_ESM.doc (1016 kb)
ESM 1 (DOC 1015 kb)


  1. Abizaid, C., & Coomes, O. T. (2004). Land use and forest fallowing dynamics in seasonally dry tropical forests of the southern Yucatán Peninsula, Mexico. Land Use Policy, 21(1), 71–84.CrossRefGoogle Scholar
  2. Arantes Borges, A., de Oliveira Campos, L. A., Fernandes Salomão, T. M., & Garcia Tavares, M. (2010). Genetic variability in five populations of Partamona helleri (Hymenoptera, Apidae) from Minas Gerais State, Brazil. Genetics and Molecular Biology, 33(4), 781–784.Google Scholar
  3. Ascher, J. S., & Pickering, J. (2015). Bee species guide (Hymenoptera: Apoidea: Anthophila). Accessed Nov 2015.Google Scholar
  4. Ballard, J. W. O., & Whitlock, M. C. (2004). The incomplete natural history of mitochondria. Molecular Ecology, 13(4), 729–744.PubMedCrossRefGoogle Scholar
  5. Beckerman, A. (2000). Counterintuitive outcomes of interspecific competition between two grasshopper species along a resource gradient. Ecology, 81(4), 948–957.CrossRefGoogle Scholar
  6. Beheregaray, L. G., & Caccone, A. (2007). Cryptic biodiversity in a changing world. Journal of Biology, 6(4), 1–5.CrossRefGoogle Scholar
  7. Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., et al. (2006). Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution, 22(3), 148–155.PubMedCrossRefGoogle Scholar
  8. Brooks, T. M., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B., Rylands, A. B., Konstant, W. R., et al. (2002). Habitat loss and extinction in the hotspots of biodiversity. Conservation Biology, 16(4), 909–923.CrossRefGoogle Scholar
  9. Brosi, B. J., Daily, G. C., Shih, T. M., Oviedo, F., & Durán, G. (2008). The effects of forest fragmentation on bee communities in tropical countryside. Journal of Applied Ecology, 45(3), 773–783.CrossRefGoogle Scholar
  10. Brown, M. J. F., & Paxton, R. J. (2009). The conservation of bees: a global perspective. Apidologie, 40(3), 410–416.CrossRefGoogle Scholar
  11. Cane, J. H. (2001). Habitat fragmentation and native bees: a premature verdict? Ecology and Society, 5(1)
  12. Carstens, B. C., Pelletier, T. A., Reid, N. M., & Satler, J. D. (2013). How to fail at species delimitation. Molecular Ecology, 22(17), 4369–4383.PubMedCrossRefGoogle Scholar
  13. Chazdon, R. (2003). Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives in Plant Ecology, Evolution and Systematics, 6(1–2), 51–71.CrossRefGoogle Scholar
  14. Clegg, S. M., Degnan, S. M., Moritz, C., Estoup, A., Kikkawa, J., & Owens, I. (2002). Microevolution in island forms: the roles of drift and directional selection in morphological divergence of a passerine bird. Evolution, 56(10), 2090–2099.PubMedCrossRefGoogle Scholar
  15. Crawford, N. (2010). SMOGD: software for the measurement of genetic diversity. Molecular Ecology Resources, 10(3), 556–557.PubMedCrossRefGoogle Scholar
  16. Darriba, D., Taboada, G., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772.PubMedPubMedCentralCrossRefGoogle Scholar
  17. de Quieroz, K. (2007). Species concepts and species delimitation. Systematic Biology, 56(6), 879–886.CrossRefGoogle Scholar
  18. Dellicour, S., & Flot, J.-F. (2015). Delimiting species-poor data sets using single molecular markers: a study of barcode gaps, haplowebs and GMYC. Systematic Biology, 64(6), 900–908.PubMedCrossRefGoogle Scholar
  19. Diemont, S. A. W., Bohn, J. L., Rayome, D. D., Kelsen, S. J., & Cheng, K. (2011). Comparisons of Mayan forest management, restoration, and conservation. Forest Ecology and Management, 261(10), 1696–1705.CrossRefGoogle Scholar
  20. Dieringer, D., & Schlötterer, C. (2003). Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Molecular Ecology Notes, 3(1), 167–169.CrossRefGoogle Scholar
  21. Drummond, A., Suchard, M., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8), 1969–1973.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Duennes, M., Lozier, J., Hines, H., & Cameron, S. (2012). Geographical patterns of genetic divergence in the widespread Mesoamerican bumble bee Bombus ephippiatus (Hymenoptera: Apidae). Molecular Phylogenetics and Evolution, 64(1), 219–231.PubMedCrossRefGoogle Scholar
  23. Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361.CrossRefGoogle Scholar
  24. Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8), 2611–2620.Google Scholar
  25. Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47–50.Google Scholar
  26. Folmer, O., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294–299.PubMedGoogle Scholar
  27. Francisco, F., Santiago, L., Brito, R., Oldroyd, B., & Arias, M. (2014). Hybridization and asymmetric introgression between Tetragonisca angustula and Tetragonisca fiebrigi. Apidologie, 45(1), 1–9.CrossRefGoogle Scholar
  28. Fujisawa, T., & Barraclough, T. (2009). splits: SPecies’ LImits by Threshold Statistics. R package version 1.0-11/r29 15.Google Scholar
  29. Fujisawa, T., & Barraclough, T. G. (2013). Delimiting species using single-locus data and the generalized mixed Yule coalescent (GMYC) approach: a revised method and evaluation on simulated datasets. Systematic Biology, 62(5), 707–724.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Galtier, N., Nabholz, B., Glémin, S., & Hurst, D. D. (2009). Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Molecular Ecology, 18(22), 4541–4550.PubMedCrossRefGoogle Scholar
  31. Gibbs, J. (2009). Integrative taxonomy identifies new (and old) species in the Lasioglossum (Dialictus) tegulare (Robertson) species group (Hymenoptera, Halictidae). Zootaxa, 2032, 1–38.Google Scholar
  32. Gibbs, J. (2010). Revision of the metallic Lasioglossum (Dialictus) of eastern North America (Hymenoptera: Halictidae: Halictini). Zootaxa, 31(2591), 1–382.Google Scholar
  33. Goldstein, P. Z., & DeSalle, R. (2010). Integrating DNA barcode data and taxonomic practice: determination, discovery, and description. Bioessays, 33(2), 135–147.CrossRefGoogle Scholar
  34. González-Acereto, J. (2008). Cría y manejo de abejas nativas sin aguijón en México. Mexico: Planeta Impresores.Google Scholar
  35. González-Acereto, J., Quezada-Euán, J., & Medina-Medina, L. (2006). New perspectives for stingless beekeeping in the Yucatán: results of an integral program to rescue and promote the activity. Journal of Apicultural Research, 45(3), 234–239.CrossRefGoogle Scholar
  36. Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9.Google Scholar
  37. Hasegawa, M., Kishino, H., & Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22(2), 160–174.Google Scholar
  38. Hedrick, P. (2011). Genetics of populations. Massachusetts: Jones and Bartelett Publishers.Google Scholar
  39. Herbert, P., Cywinska, A., Ball, S., & deWaard, J. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society London B: Biological Sciences, 270(1512), 313–321.CrossRefGoogle Scholar
  40. Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8), 754–755.PubMedCrossRefGoogle Scholar
  41. Husemann, M., Tobler, M., McCauley, C., Ding, B., & Danley, P. (2014). Evolution of body shape in differently coloured sympatric congeners and allopatric populations of Lake Malawi’s rock-dwelling cichlids. Journal of Evolutionary Biology, 27(5), 826–839.PubMedCrossRefGoogle Scholar
  42. IBM Corp. (2013). IBM SPSS Statistics for Windows (22nd ed.). Armonk: IBM Corp.Google Scholar
  43. INEGI. (2006). Instituto Nacional de Estadística Geografia e Informática. Nov 2015.
  44. Jaffé, R., Castilla, A., Pope, N., Imperatriz-Fonseca, V. L., Metzger, J. P., Arias, M. C., et al. (2015). Landscape genetics of a tropical rescue pollinator. Conservation Genetics, 17(2), 267–278.CrossRefGoogle Scholar
  45. Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23(14), 1801–1806.PubMedCrossRefGoogle Scholar
  46. Katzner, T. E., Bragin, E. A., Knick, T., & Smith, T. (2003). Coexistence in a multispecies assemblage of eagles in central asia. Condor, 105(3), 538–551.CrossRefGoogle Scholar
  47. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. (2012). Geneious. Bioinformatics, 28(12), 1647–1649.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Klein, A.-M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society London B: Biological Sciences, 274(1608), 303–313.CrossRefGoogle Scholar
  49. Kukuk, P., Forbes, S., Zahorchack, R., Riddle, A., & Pilgrim, K. (2002). Highly polymorphic microsatellite markers developed for the social halictine bee Lasioglossum (Chilalictus) hemichalceum. Molecular Ecology Notes, 2(4), 529–530.CrossRefGoogle Scholar
  50. Li, P., Luo, Y., Bernhardt, P., Kou, Y., & Perner, H. (2008). Pollination of Cypripedium plectrochilum (Orchidaceae) by Lasioglossum spp. (Halictidae): the roles of generalist attractants versus restrictive floral architecture. Plant Biology, 10(2), 220–230.PubMedCrossRefGoogle Scholar
  51. Michener, C. (2007). The Bees of the World. Baltimore, USA: John Hopkins University Press.Google Scholar
  52. Mittermeier, R. A., Turner, W., Larsen, W., Brooks, T. M., & Gascon, C. (2004). Chapter 1. Global biodiversity conservation: the critical role of hotspots. In R. A. Mittermeier, P. Robles-Gil, M. Hoffmann, J. D. Pilgrim, T. M. Brooks, C. G. Mittermeier, et al. (Eds.), Hotspots revisited: earth’s biologically richest and most endangered ecoregions (pp. 3–22). Mexico City: CEMEX.Google Scholar
  53. Murray, J. T., Fitzpatrick, U., Brown, M. J. F., & Paxton, R. (2008). Cryptic species diversity in a widespread bumble bee complex revealed using mitochondrial DNA RFLPs. Conservation Genetics Resources, 9(3), 653–666.CrossRefGoogle Scholar
  54. Myers, N., Mittermeier, A. R., Mittermeier, C., da Fonseca, F. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.PubMedCrossRefGoogle Scholar
  55. Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120(3), 321–326.CrossRefGoogle Scholar
  56. Oosterhout, C. V., Hutchinson, W. F., Wills, D. P. M., & Shipley, P. (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4(3), 535–538.CrossRefGoogle Scholar
  57. Packer, L., Ali, E., Dumesh, S., & Walker, K. (2016). The identification of pollinators: where are we and where should we go? In B. Gemmil-Herren (Ed.), Pollination services to agriculture. Sustaining and enhancing a key ecosystem service (pp. 57–73). New York: The Food and Agriculture Organization of the United Nations Routledge.Google Scholar
  58. Padoch, C., & Pinedo-Vasquez, M. (2010). Saving slash-and-burn to save biodiversity. Biotropica, 42(5), 550–552.CrossRefGoogle Scholar
  59. Paradis, E., Claude, J., & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20(2), 289–290.PubMedCrossRefGoogle Scholar
  60. Paxton, R., Arevalo, E., & Field, J. (2003). Microsatellite loci for the eusocial Lasioglossum malachurum and other sweat bees (Hymenoptera, Halictidae). Molecular Ecology Notes, 3(1), 82–84.CrossRefGoogle Scholar
  61. Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 28(19), 2537–2539.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Pimm, S. L., & Raven, P. (2000). Biodiversity: extinction by numbers. Nature, 403, 843–845.PubMedCrossRefGoogle Scholar
  63. Pons, J., Barraclough, T., Gomez-Zurita, J., Cardoso, A., Duran, D., Hazell, S., Kamoun, S., Sumlin, W. D., & Vogler, A. P. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55(4), 595–609.PubMedCrossRefGoogle Scholar
  64. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959.PubMedPubMedCentralGoogle Scholar
  65. Puillandre, N., Lambert, A., Brouillet, S., & Achaz, G. (2011). ABGD, automatic barcode gap discovery for primary species delimitation. Molecular Ecology, 21(8), 1864–1877.PubMedCrossRefGoogle Scholar
  66. R Development Core Team. (2015). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  67. Rambaut, A. (2014). FigTree v.1.4.2. Accessed Nov 2015.
  68. Ramírez-Delgado, J. P., Christman, Z., & Schmooka, B. (2015). Deforestation and fragmentation of seasonal tropical forests in the southern Yucatán, Mexico (1990–2006). Geocarto International, 29(8), 822–841.CrossRefGoogle Scholar
  69. Ratnasingham, S., & Hebert, P. D. (2007). BOLD: the barcode of life data system ( Molecular Ecology Notes, 7(3), 355–364.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Ratnasingham, S., & Hebert, P. D. (2013). A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS ONE, 8(8), e66213.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Raymond, M., & Rousset, F. (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity, 86(3), 248–249.CrossRefGoogle Scholar
  72. Reid, N. M., & Carstens, B. C. (2012). Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evolutionary Biology, 12(196), 11.Google Scholar
  73. Ricketts, T. H., Dinerstein, E., Boucher, T., Brooks, T. M., Butchart, S. H., Hoffmann, M., et al. (2005). Pinpointing and preventing imminent extinctions. Proceedings of the National Academy of Science, 102(51), 18497–18501.CrossRefGoogle Scholar
  74. Ricklefs, R., & Travis, J. (1980). Morphological approach to the study of avian community organization. The Auk, 97(2), 321–338.Google Scholar
  75. Rozas, J., Sánchez-DelBarrio, C., Messeguer, X., & Rozas, R. (2003). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19(18), 2496–2497.PubMedCrossRefGoogle Scholar
  76. Shokralla, S., Gibson, J. F., Nikbakht, H., & Janzen, D. (2014). Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens. Molecular Ecology Resources, 14(5), 892–901.PubMedPubMedCentralGoogle Scholar
  77. Soro, A., & Paxton, R. (2009). Characterization of 14 polymorphic microsatellite loci for the facultatively eusocial sweat bee Halictus rubicundus (Hymenoptera, Halictidae) and their variability in related species. Molecular Ecology Resources, 9(1), 150–152.PubMedCrossRefGoogle Scholar
  78. Souza, R., Del Lama, M., Cervini, M., Mortari, N., Eltz, T., Zimmermann, Y., Bach, C., Brosi, B. J., Suni, S., Quezada-Euán, J. J., & Paxton, R. J. (2009). Conservation genetics of neotropical pollinators revisited: microsatellite analysis suggests that diploid males are rare in orchid bees. Evolution, 64(11), 3318–3326.CrossRefGoogle Scholar
  79. Stamatakis, A. (2014). RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 21(30), 9.Google Scholar
  80. Taki, H., Okochi, I., Okabe, K., Inoue, T., Goto, H., Matsumura, T., et al. (2013). Succession influences wild bees in a temperate forest landscape: the value of early successional stages in naturally regenerated and planted forest. PLoS ONE, 8(2), E56678.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Tinglei, J., Feng, J., Sun, K., & Wang, J. (2008). Coexistence of two sympatric and morphologically similar bat species Rhinolophys affinis and Rhinolophus pearsoni. Progress in Natural Science, 18(2008), 523–532.Google Scholar
  83. Vanbergen, A., Baude, M., Biesmeijer, J. C., Britton, N. F., Brown, M. J., Brown, M., et al. (2013). Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and the Environment, 11(5), 251–259.CrossRefGoogle Scholar
  84. Veech, J.A., Peres-Neto, P., (2013) A probabilistic model for analysing species co-occurrence. Global Ecology and Biogeography 22 (2),252–260Google Scholar
  85. Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (Fourthth ed.). New York: Springer.CrossRefGoogle Scholar
  86. Wade, E., Hertach, T., Gogala, M., Trilar, T., & Simon, C. (2015). Molecular species delimitation methods recover most song-delimited cicada species in the European Cicadetta montana complex. Journal of Evolutionary Biology, 28(12), 2318–2336.PubMedCrossRefGoogle Scholar
  87. Walsh, P., Metzger, D., & Higuchi, R. (1991). Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques, 10(4), 506–513.PubMedGoogle Scholar
  88. Whitlock, R. (2014). Relationships between adaptive and neutral genetic diversity and ecological structure and functioning: a meta-analysis. Journal of Ecology, 102(4), 857–872.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Wickham, H. (2009). ggplot2: elegant graphics for data analysis. New York: Springer.CrossRefGoogle Scholar
  90. Williams, P. H., Brown, M. J. F., Carolan, J. C., An, J., Goulson, D., Aytekin, M., Best, L. R., Byvaltsev, A. M., Cederberg, B., Dawson, R., Huang, J., et al. (2012). Unveiling cryptic species of the bumblebee subgenus Bombus s. str. worldwide with COI barcodes (Hymenoptera: Apidae). Systematic and Biodiversity, 10(1), 21–56.CrossRefGoogle Scholar
  91. Wyman, M., Gomez Villegas, Z., & Miranda Ojeda, I. (2007). Land-use/land-cover change in Yucatán State, Mexico: an examination of political, socioeconomic, and biophysical drivers in Peten and Tzucacab. Ethnobotany Research and Applications, 5, 59–66.CrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2016

Authors and Affiliations

  • Patricia Landaverde-González
    • 1
  • Humberto Moo-Valle
    • 2
  • Tomás E. Murray
    • 1
    • 3
  • Robert J. Paxton
    • 1
    • 4
  • José Javier G. Quezada-Euán
    • 2
  • Martin Husemann
    • 1
    • 5
  1. 1.General Zoology, Institute for BiologyMartin-Luther University Halle-WittenbergHalle (Saale)Germany
  2. 2.Departamento de Apicultura Tropical, Campus Ciencias Biológicas y AgropecuariasUniversidad Autónoma de YucatánMéridaMexico
  3. 3.National Biodiversity Data CentreWaterfordIreland
  4. 4.German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-LeipzigLeipzigGermany
  5. 5.Centrum für NaturkundeUniversity of HamburgHamburgGermany

Personalised recommendations